MAT536 Homework 4

Due Wednesday, February 22

1. Consider the curves $\gamma, \eta:[0,2 \pi] \rightarrow \mathbb{C}$ given by $\quad \gamma(t)=\sin (t) e^{i t}, \quad \eta(t)=\sin (t) e^{2 i t}$.

Sketch the image of each curve (indicating orientation), and find the values of the winding numbers $W(\gamma, \cdot)$ and $W(\gamma, \cdot)$ in each component of $\mathbb{C} \backslash\{\gamma\}$ and $\mathbb{C} \backslash\{\eta\}$, respectively.
2. Show that the function $f(z)=z$ has no holomorphic square root in the unit disk \mathbb{D}, i.e., there is no $f \in \mathcal{O}(\mathbb{D})$ such that $f^{2}(z)=z$ for $|z|<1$.
By contrast, show that there is a unique $f \in \mathcal{O}\left(\mathbb{D}_{1}(1)\right)$ which satisfies $f^{2}(z)=z$ and $f(1)=1$. Writing \sqrt{z} for $f(z)$, verify the expansion

$$
\sqrt{z}=1+\frac{1}{2}(z-1)-\frac{1}{8}(z-1)^{2}+\frac{1}{16}(z-1)^{3}-\frac{5}{128}(z-1)^{4}+\cdots
$$

for $|z-1|<1$.
3. Let $f \in \mathcal{O}(U)$, with $U \subset \mathbb{C}$ a simply connected domain. Suppose $f^{-1}(0)=\left\{p_{1}, \ldots, p_{n}\right\}$, and also for each k between 1 and $n, \operatorname{ord}\left(f, p_{k}\right)$ is an even integer. Show that f has a holomorphic square root in U.
4. Let the image of γ be a positively oriented smooth Jordan curve in \mathbb{C}. What quantity does

$$
\frac{1}{2 i} \int_{\gamma} \bar{z} d z
$$

measure? Does the meaning change if γ has a finite number of self-intersections? Hint: write as a pair of line integrals and use Green's theorem.
5. Is there a closed curve $\gamma:[0,1] \rightarrow \mathbb{C}$ so that the winding number function $p \mapsto W(\gamma, p)$ defined on $\mathbb{C} \backslash\{\gamma\}$ takes on
(a) only the values $0,1,2,3$?
(b) only the values $0,1,3$?
(c) every integer value?
(For each answer above, give an explicit example or a proof why it cannot occur. "Explicit" doesn't necessarily mean a formula.)
6. (You don't have to hand in this one) ${ }^{\dagger}$

In the image below, is the point z inside or outside? Explain.

[^0]
[^0]: \dagger taken from Complex Analysis by Theodore Gamelin, p. 251

