MAT536 Homework 4

Due Wednesday, February 22

- **1.** Consider the curves $\gamma, \eta : [0, 2\pi] \to \mathbb{C}$ given by $\gamma(t) = \sin(t)e^{it}$, $\eta(t) = \sin(t)e^{2it}$. Sketch the image of each curve (indicating orientation), and find the values of the winding numbers $W(\gamma, \cdot)$ and $W(\gamma, \cdot)$ in each component of $\mathbb{C} \setminus \{\gamma\}$ and $\mathbb{C} \setminus \{\eta\}$, respectively.
- 2. Show that the function f(z) = z has no holomorphic square root in the unit disk D, i.e., there is no f ∈ O(D) such that f²(z) = z for |z| < 1. By contrast, show that there is a unique f ∈ O(D₁(1)) which satisfies f²(z) = z and f(1) = 1. Writing √z for f(z), verify the expansion

$$\sqrt{z} = 1 + \frac{1}{2}(z-1) - \frac{1}{8}(z-1)^2 + \frac{1}{16}(z-1)^3 - \frac{5}{128}(z-1)^4 + \cdots$$

for |z - 1| < 1.

- **3.** Let $f \in \mathcal{O}(U)$, with $U \subset \mathbb{C}$ a simply connected domain. Suppose $f^{-1}(0) = \{p_1, \dots, p_n\}$, and also for each *k* between 1 and *n*, ord (f, p_k) is an even integer. Show that *f* has a holomorphic square root in *U*.
- 4. Let the image of γ be a positively oriented smooth Jordan curve in \mathbb{C} . What quantity does

$$\frac{1}{2i}\int_{\gamma} \overline{z} \, dz$$

measure? Does the meaning change if γ has a finite number of self-intersections? Hint: write as a pair of line integrals and use Green's theorem.

- **5.** Is there a closed curve $\gamma : [0,1] \to \mathbb{C}$ so that the winding number function $p \mapsto W(\gamma, p)$ defined on $\mathbb{C} \setminus \{\gamma\}$ takes on
 - (a) only the values 0,1,2,3?
 - (b) only the values 0,1,3?
 - (c) every integer value?

(For each answer above, give an explicit example or a proof why it cannot occur. "Explicit" doesn't necessarily mean a formula.)

6. (You don't have to hand in this one)^{\dagger}

In the image below, is the point *z* inside or outside? Explain.

[†]taken from Complex Analysis by Theodore Gamelin, p.251