MAT536 Homework 3

Due Wednesday, February 15

1. Suppose $f, g \in \mathcal{O}(\mathbb{D})$ and neither f nor g has a zero in \mathbb{D}. If

$$
\frac{f^{\prime}(z)}{f(z)}=\frac{g^{\prime}(z)}{g(z)} \quad \text { for } \quad z=\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots
$$

what relation between f and g must hold?
2. Suppose $U \subset \mathbb{C}$ is a domain and $f, g \in \mathcal{O}(U)$. If $|f(z)|^{2}+|g(z)|^{2}=1$ for all $z \in U$, show that both f and g are constant.
3. Suppose $f \in \mathcal{O}(\mathbb{C})$ and there is a constant $C>0$ such that

$$
\int_{0}^{2 \pi}\left|f\left(r e^{i t}\right)\right| d t \leq C r^{3 / 2} \quad \text { for all } r>0
$$

Prove that $f=0$ in \mathbb{C}. What property of the constant $3 / 2$ is used here?
(Hint: Use Cauchy's integral formula for the higher derivatives $f^{(n)}(0)$.)
4. Suppose $U \subset \mathbb{C}$ is a bounded domain, $f: \bar{U} \rightarrow \mathbb{C}$ is continuous, $f \in \mathcal{O}(U)$, and $|f|$ is constant on ∂U. If $f \neq 0$ in U, show that f must be constant in U.
Give an example showing that the assumption $f \neq 0$ in U is essential.
5. Let $X=\mathbb{C} \backslash\{-1,1\}$ be the twice-punctured plane, and let

$$
\gamma(t)=e^{2 \pi i t}-1 \quad \eta(t)=-\gamma(t)=1-e^{2 \pi i t}
$$

Show that the closed curves $\gamma \cdot \eta$ and $\eta \cdot \gamma$ are freely homotopic in X, but are not homotopic in X with basepoint 0 .

