MAT536 Homework 1

Due Wednesday, February 1

1. This exercise develops several useful formulas in complex-variable notation. Consider the differential operators

$$f_z = \frac{1}{2}(f_x - if_y)$$
 and $f_{\bar{z}} = \frac{1}{2}(f_x + if_y)$

acting on smooth functions $f: U \to \mathbb{R}$ Recall that for f = u + iv, the notation \overline{f} is used for the conjugate function u - iv.

(a) Verify the product rules

$$(fg)_z = f_z g + fg_z$$
$$(fg)_{\overline{z}} = f_{\overline{z}}g + fg_{\overline{z}}.$$

(b) Verify the chain rules

$$(f \circ g)_z = (f_z \circ g) g_z + (f_{\overline{z}} \circ g) \overline{g}_z$$
$$(f \circ g)_{\overline{z}} = (f_z \circ g) g_{\overline{z}} + (f_{\overline{z}} \circ g) \overline{g}_{\overline{z}}.$$

(c) Show that

$$\overline{f}_z = \overline{(f_{\overline{z}})}$$
 and $\overline{f}_{\overline{z}} = \overline{(f_z)}$.

(d) Let J_f be the Jacobian determinant of f, viewed as a map $U \to \mathcal{R}^2$:

$$J_f = \det Df = \det \begin{bmatrix} u_x & u_y \\ v_x & v_y \end{bmatrix}.$$

Verify that $J_f = |f_z|^2 - |f_{\overline{z}}|^2$. In particular, if $f \in \mathcal{O}(U)$, then $J_f = |f'|^2$.

(e) Verify that

$$\Delta f = 4f_{z\overline{z}} = 4f_{\overline{z}z},$$

where $\Delta f = f_{xx} + f_{yy}$ is the usual Laplacian of f.

- (f) Show that if $f \in \mathcal{O}(U)$, then $\Delta |f|^2 = 4|f'|^2$.
- **2.** Let $f = u + iv \in \mathcal{O}(U)$. Show that

$$|f'| = \|\nabla u\| = \|\nabla v\| \quad \text{in } U,$$

where ∇u is the gradient of u and $\|\cdot\|$ is the Euclidean norm in \mathbb{R}^2 . At every point where $f' \neq 0$, find a simple geometric interpretation for the Cauchy-Riemann equations in terms of the vectors ∇u and ∇v at that point.

3. Determine the radius of convergence of the power series

$$\sum_{j=1}^{\infty} j z^j \quad \text{and} \quad \sum_{j=1}^{\infty} j^2 z^j.$$

What familiar functions of z do these series represent in their disk of convergence? Give formulas.