MAT536 Homework 1

Due Wednesday, February 1

1. This exercise develops several useful formulas in complex-variable notation. Consider the differential operators

$$
f_{z}=\frac{1}{2}\left(f_{x}-i f_{y}\right) \quad \text { and } \quad f_{\bar{z}}=\frac{1}{2}\left(f_{x}+i f_{y}\right)
$$

acting on smooth functions $f: U \rightarrow$. Recall that for $f=u+i v$, the notation \bar{f} is used for the conjugate function $u-i v$.
(a) Verify the product rules

$$
\begin{aligned}
& (f g)_{z}=f_{z} g+f g_{z} \\
& (f g)_{\bar{z}}=f_{\bar{z}} g+f g_{\bar{z}} .
\end{aligned}
$$

(b) Verify the chain rules

$$
\begin{aligned}
& (f \circ g)_{z}=\left(f_{z} \circ g\right) g_{z}+\left(f_{\bar{z}} \circ g\right) \bar{g}_{z} \\
& (f \circ g)_{\bar{z}}=\left(f_{z} \circ g\right) g_{\bar{z}}+\left(f_{\bar{z}} \circ g\right) \bar{g}_{\bar{z}}
\end{aligned}
$$

(c) Show that

$$
\bar{f}_{z}=\overline{\left(f_{\bar{z}}\right)} \quad \text { and } \quad \bar{f}_{\bar{z}}=\overline{\left(f_{z}\right)}
$$

(d) Let J_{f} be the Jacobian determinant of f, viewed as a map $U \rightarrow \mathcal{R}^{2}$:

$$
J_{f}=\operatorname{det} D f=\operatorname{det}\left[\begin{array}{ll}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right] .
$$

Verify that $J_{f}=\left|f_{z}\right|^{2}-\left|f_{\bar{z}}\right|^{2}$. In particular, if $f \in \mathcal{O}(U)$, then $J_{f}=\left|f^{\prime}\right|^{2}$.
(e) Verify that

$$
\Delta f=4 f_{z \bar{z}}=4 f_{\bar{z} z}
$$

where $\Delta f=f_{x x}+f_{y y}$ is the usual Laplacian of f.
(f) Show that if $f \in \mathcal{O}(U)$, then $\Delta|f|^{2}=4\left|f^{\prime}\right|^{2}$.
2. Let $f=u+i v \in \mathcal{O}(U)$. Show that

$$
\left|f^{\prime}\right|=\|\nabla u\|=\|\nabla v\| \quad \text { in } U
$$

where ∇u is the gradient of u and $\|\cdot\|$ is the Euclidean norm in \mathbb{R}^{2}. At every point where $f^{\prime} \neq 0$, find a simple geometric interpretation for the Cauchy-Riemann equations in terms of the vectors ∇u and ∇v at that point.
3. Determine the radius of convergence of the power series

$$
\sum_{j=1}^{\infty} j z^{j} \quad \text { and } \quad \sum_{j=1}^{\infty} j^{2} z^{j}
$$

What familiar functions of z do these series represent in their disk of convergence? Give formulas.

