MAT515 Homework 9

Due Wednesday, November 18

1. Given triangle $\triangle A B C$, recall that the incircle is the unique circle that is tangent to the three lines $\overleftrightarrow{A B}, \overleftrightarrow{B C}$, and $\overleftrightarrow{A C}$. Its center is the incenter, which is the interscetion of the three angle bisectors of the triangle.

Let the points of tangency of the incircle be D on $\overline{B C}, E$ on $\overline{A C}$ and F on $\overline{A B}$. Show that the segments $\overline{A D}, \overline{B E}$, and $\overline{C F}$ are concurrent. The point of concurrency is called the Gergonne point of $\triangle A B C$.

2. Prove that the incircle of the right triangle with side lengths 3 , 4 , and 5 (usually called the " $3-4-5$ triangle") has radius 1 .

A generalization of this result is that in a right triangle with legs of length a and b and hypotenuse of length c, the radius of the incircle is $\frac{1}{2}(a+b-c)$.
3. Let two circles \mathcal{C}_{1} and \mathcal{C}_{2} intersect at distinct points M and N.
(a) Prove that the line joining the center of \mathcal{C}_{1} to the center of \mathcal{C}_{2} is perpendicular to $\overleftrightarrow{M N}$.
(b) Let the line ℓ be tangent to both \mathcal{C}_{1} and \mathcal{C}_{2}. Prove that the circles have equal radii if and only if $\overleftarrow{M N}$ is perpendicular to ℓ.
4. Let $\triangle A B C$ be an acute triangle with altitudes $\overline{A D}, \overline{B E}$, and $\overline{C F}$. Triangle $\triangle D E F$ is called the orthic triangle of $\triangle A B C$. Prove that the orthocenter of $\triangle A B C$ is the incenter of its orthic triangle $\triangle D E F$.

Among other properties, the orthic triangle has the smallest perimeter among all triangles with vertices on the sides of $\triangle A B C$. This solves Fagano's problem, first stated in 1775.

