
MAT515 Homework 9
Due Wednesday, November 18

1. Given triangle4ABC, recall that the incircle is the unique circle that
is tangent to the three lines AB

←→
, BC
←→

, and AC
←→

. Its center is the
incenter, which is the interscetion of the three angle bisectors of the
triangle.

Let the points of tangency of the incircle be D on BC, E on AC and
F on AB. Show that the segments AD, BE, and CF are concurrent.
The point of concurrency is called the Gergonne point of4ABC.
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2. Prove that the incircle of the right triangle with side lengths 3, 4, and 5 (usually called the “3-4-5
triangle”) has radius 1.

A generalization of this result is that in a right triangle with legs of length a and b and hypotenuse of
length c, the radius of the incircle is 1

2(a+b− c).

3. Let two circles C1 and C2 intersect at distinct points M and N.

(a) Prove that the line joining the center of C1 to the center of C2 is perpendicular to MN
←→

.

(b) Let the line ` be tangent to both C1 and C2. Prove that the circles have equal radii if and
only if MN

←→
is perpendicular to `.

4. Let 4ABC be an acute triangle with altitudes AD, BE, and CF . Tri-
angle4DEF is called the orthic triangle of4ABC. Prove that the
orthocenter of4ABC is the incenter of its orthic triangle4DEF .

Among other properties, the orthic triangle has the smallest perime-
ter among all triangles with vertices on the sides of 4ABC. This solves
Fagano’s problem, first stated in 1775.
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https://en.wikipedia.org/wiki/Gergonne_point
https://www.geogebra.org/classic/qtwpu2jt
https://mathworld.wolfram.com/OrthicTriangle.html
https://en.wikipedia.org/wiki/Fagnano%27s_problem
https://www.geogebra.org/classic/p4c3dkfz

