MAT515 Homework 9

Due Wednesday, November 18

1. Given triangle $\triangle ABC$, recall that the incircle is the unique circle that is tangent to the three lines \overrightarrow{AB} , \overrightarrow{BC} , and \overrightarrow{AC} . Its center is the **incenter**, which is the interscetion of the three angle bisectors of the triangle.

Let the points of tangency of the incircle be D on \overline{BC} , E on \overline{AC} and F on \overline{AB} . Show that the segments \overline{AD} , \overline{BE} , and \overline{CF} are concurrent. The point of concurrency is called the **Gergonne point** of $\triangle ABC$.

2. Prove that the incircle of the right triangle with side lengths 3, 4, and 5 (usually called the "3-4-5 triangle") has radius 1.

A generalization of this result is that in a right triangle with legs of length *a* and *b* and hypotenuse of length *c*, the radius of the incircle is $\frac{1}{2}(a+b-c)$.

- **3.** Let two circles C_1 and C_2 intersect at distinct points *M* and *N*.
 - (a) Prove that the line joining the center of C_1 to the center of C_2 is perpendicular to \overrightarrow{MN} .
 - (b) Let the line ℓ be tangent to both C_1 and C_2 . Prove that the circles have equal radii if and only if \overrightarrow{MN} is perpendicular to ℓ .
- **4.** Let $\triangle ABC$ be an acute triangle with altitudes \overline{AD} , \overline{BE} , and \overline{CF} . Triangle $\triangle DEF$ is called the **orthic triangle** of $\triangle ABC$. Prove that the orthocenter of $\triangle ABC$ is the incenter of its orthic triangle $\triangle DEF$.

Among other properties, the orthic triangle has the smallest perimeter among all triangles with vertices on the sides of $\triangle ABC$. This solves Fagano's problem, first stated in 1775.

