MAT515 Homework 8

Due Wednesday, November 11

1. (a) In $\triangle A B C$, prove that the angle bisector of $\angle A$ and the bisectors of the exterior angles at B and C is always concurrent. This point of concurrency is called an excenter of $\triangle A B C$; there are three such excenters of every triangle (one for each vertex).
(b) Let X be one of the three excenters of $\triangle A B C$, and show that X is equidistant from the three lines $\overleftrightarrow{A B}, \overleftrightarrow{B C}$, and $\overleftrightarrow{A C}$.
2. Let ℓ be a line passing through the centriod G of $\triangle A B C$ so that A is one half-plane with respect to ℓ and B and C lie in the other. Show that the distance from A to ℓ is equal to the sum of the distances from B to ℓ and from C to ℓ.
3. In triangle $\triangle A B C$, let D be the midpoint of $\overline{B C}$, and let M be the midpoint of the median $\overline{A D}$. Let E be the intersection of $\overrightarrow{A M}$ with $\overrightarrow{A C}$. Prove that $|E C|=2|A E|$. (Hint: use Menelaus' Theorem, although you can also do it without it.)
4. Prove that in any triangle, the sum of the lengths of the medians is greater than $3 / 4$ of the perimeter of the triangle. (The perimeter of any polygon is the sum of the lengths of its edges.)
