MAT515 Homework 7

Due Wednesday, October 21

Problems marked with a * are optional/extra credit. Even if you don't do them, please at least think about them, then read and understand the solutions after they are posted.

1. In the figure at right, $\triangle A B C$ is equilateral, and $\square P Q R S$ is a square. P lies on $\overline{A B}, Q$ and R lie on $\overline{B C}$ and S lies on $\overline{A C}$.

If $|B C|=k$, what is the length of $\overline{Q R}$?
Note: if you want to use a fact like "an equilateral triangle with a side of length 1 has altitude of length $\sqrt{3} / 2^{\prime \prime}$, you should prove that - preferably not just by the "method of lucky guess, then check."

2. Given $\triangle A B C$, let D be a point on $\overline{A B}$ and E be a point on $\overline{A C}$ so that $|A D| /|A B|=|A E| /|A C|$. Prove that $\overline{B E}$ and $\overline{C D}$ intersect on the median from A.
3. Let $\triangle A B C$ have angles of $30^{\circ}, 60^{\circ}$, and 90°, with $\angle C$ being the right angle. Prove that the angle bisector of C, the median through C, the perpendicular bisector of $\overline{A B}$, and the altitude from C all lie on distinct lines.
4. (a) Let ℓ be a line and ρ be a rotation by θ degrees around a point O. Prove that if $\theta \neq 180$ and $\theta \neq-180$, then the lines $\rho(\ell)$ and ℓ intersect at some point Q, and each of the four angles at Q have measure either θ or $180-\theta$ degrees.
(b) Let P_{1} and P_{2} be points on lines ℓ_{1} and ℓ_{2} respectively, and suppose ℓ_{1} and ℓ_{2} intersect at a point Q distict from P_{1} and P_{2}.
Prove that there is a rotation ρ of θ degrees so that $\rho\left(\ell_{1}\right)=\ell_{2}$ and $\rho\left(P_{1}\right)=P_{2}$, where θ is the measure of one of the four angles at Q.
*5. Let P be a point interior to triangle $\triangle A B C$ (not lying on one of the sides). Prove that $|B P|+|P C|<|B A|+|A C|$.

