MAT515 Homework 7

Due Wednesday, October 21

Problems marked with a * are optional/extra credit. Even if you don't do them, please at least think about them, then read and understand the solutions after they are posted.

1. In the figure at right, $\triangle ABC$ is equilateral, and $\Box PQRS$ is a square. *P* lies on \overline{AB} , *Q* and *R* lie on \overline{BC} and *S* lies on \overline{AC} .

If |BC| = k, what is the length of \overline{QR} ?

Note: if you want to use a fact like "an equilateral triangle with a side of length 1 has altitude of length $\sqrt{3}/2$ ", you should prove that — preferably not just by the "method of lucky guess, then check."

- **2.** Given $\triangle ABC$, let *D* be a point on \overline{AB} and *E* be a point on \overline{AC} so that |AD|/|AB| = |AE|/|AC|. Prove that \overline{BE} and \overline{CD} intersect on the median from *A*.
- **3.** Let $\triangle ABC$ have angles of 30°, 60°, and 90°, with $\angle C$ being the right angle. Prove that the angle bisector of *C*, the median through *C*, the perpendicular bisector of \overline{AB} , and the altitude from *C* all lie on distinct lines.
- 4. (a) Let *l* be a line and *ρ* be a rotation by θ degrees around a point *O*. Prove that if θ ≠ 180 and θ ≠ -180, then the lines *ρ*(*l*) and *l* intersect at some point *Q*, and each of the four angles at *Q* have measure either θ or 180 θ degrees.
 - (b) Let P_1 and P_2 be points on lines ℓ_1 and ℓ_2 respectively, and suppose ℓ_1 and ℓ_2 intersect at a point Q distict from P_1 and P_2 . Prove that there is a rotation ρ of θ degrees so that $\rho(\ell_1) = \ell_2$ and $\rho(P_1) = P_2$, where θ is the measure of one of the four angles at Q.
- *5. Let *P* be a point interior to triangle $\triangle ABC$ (not lying on one of the sides). Prove that |BP| + |PC| < |BA| + |AC|.