MAT515 Homework 5

Due Wednesday, October 7

1. Given $\triangle A B C$, let F be the midpoint of $\overline{B C}$. Prove that $\overrightarrow{A F}$ is the angle bisector of $\angle A$ if and only if $|A B|=|A C|$.
2. (a) Prove that a dilation $\Delta_{O, r}$ of any convex set is convex.
(b) Prove that the dilation of polygon is a polygon.
(c) Prove that the dilation of a regular polygon is a regular polygon.
3. Let O be a point not on a circle \mathcal{C} with center A and radius r, and let Δ be the dilation with center O and scale factor s. Prove that $\Delta(\mathcal{C})$ is a circle with center $\Delta(A)$ and radius $s r$.
4. Let P and Q be two distinct points in the plane, and let Δ_{P} and Δ_{Q} be the dilation with center P and scale factor r, and the dilation with center Q and scale factor s, respectively.
(a) If $s=1 / r$, show that $\Delta_{P} \circ \Delta_{Q}$ is a translation.
(b) If $r s \neq 1$, prove that there is a point X so that $\Delta_{P} \circ \Delta_{Q}$ is a dilation with center X.
5. Prove the converse of the alternate interior angle theorem (G18).

Theorem G19. Let L be a transversal to a pair of distinct lines ℓ_{1} and ℓ_{2}. If the alternate interior angles of L with respect to ℓ_{1} and ℓ_{2} are congruent, then ℓ_{1} is parallel to ℓ_{2}. The same holds of the corresponding angles.

