MAT515 Homework 5

Due Wednesday, October 7

- **1.** Given $\triangle ABC$, let *F* be the midpoint of \overline{BC} . Prove that \overrightarrow{AF} is the angle bisector of $\angle A$ if and only if |AB| = |AC|.
- **2.** (a) Prove that a dilation $\Delta_{O,r}$ of any convex set is convex.
 - (b) Prove that the dilation of polygon is a polygon.
 - (c) Prove that the dilation of a regular polygon is a regular polygon.
- **3.** Let *O* be a point not on a circle *C* with center *A* and radius *r*, and let Δ be the dilation with center *O* and scale factor *s*. Prove that $\Delta(C)$ is a circle with center $\Delta(A)$ and radius *sr*.
- **4.** Let *P* and *Q* be two distinct points in the plane, and let Δ_P and Δ_Q be the dilation with center *P* and scale factor *r*, and the dilation with center *Q* and scale factor *s*, respectively.
 - (a) If s = 1/r, show that $\Delta_P \circ \Delta_Q$ is a translation.
 - (b) If $rs \neq 1$, prove that there is a point X so that $\Delta_P \circ \Delta_Q$ is a dilation with center X.
- 5. Prove the converse of the alternate interior angle theorem (G18).

Theorem G19. Let L be a transversal to a pair of distinct lines ℓ_1 and ℓ_2 . If the alternate interior angles of L with respect to ℓ_1 and ℓ_2 are congruent, then ℓ_1 is parallel to ℓ_2 . The same holds of the corresponding angles.