MAT515 Homework 1

Due Wednesday, September 9

1. Give all the reasons why the geometric figure with five vertices as shown below cannot be a polygon.

2. Let A and P be two distinct points on the line $\overleftrightarrow{A P}$, and let \mathcal{R} be one of the two rays within $\overleftrightarrow{A P}$ issuing from A. Show that one and only one of the two rays issuing from P either contains \mathcal{R} or is contained in \mathcal{R}.
3. Let ℓ be a line in the plane, and let A, B, and C be three points in the plane so that A and B are in the same half-plane with respect to ℓ, and also B and C are in the same half-plane with respect to ℓ. Prove that A and C are in the same half-plane with respect to ℓ.
4. (a) Prove that any ray $\overrightarrow{A B}$ is convex.
(b) Prove that a closed half-plane is convex.
(c) Suppose that for each i, \mathcal{C}_{i} is convex and also that $\mathcal{C}_{i} \subset \mathcal{C}_{i+1}$. There may be a finite number of sets \mathcal{C}_{i}, or there may be infinitely many of them. Prove that the union of all the sets \mathcal{C}_{i} is also convex.
(d) Is it always true that the union of convex sets is convex? Provide a proof or give a counterexample.
5. Let A, B, and C be three noncolinear points. Explain why the union of the three segments $\overline{A B}, \overline{B C}$, and $\overline{C A}$ must form a polygon; that is, each pair of segments can only intersect at one of the endpoints.
6. Let ℓ_{1} and ℓ_{2} be parallel lines, and let ℓ_{3} be a third line distinct from ℓ_{1}. Prove that if ℓ_{3} intersects ℓ_{1} then it also must intersect ℓ_{2}.
7. Imagine that the hands of a clock are rays emanating from the center of the clock. What is the measure of the angle between the hands when the time is $8: 20$?
8. A triangular region of the plane is defined to be the intersection of the three angles of a triangle.
(a) Show that any triangular region is convex.
(b) Let \mathcal{T} be a triangular region in the plane. Show ${ }^{\dagger}$ that if $P \in \mathcal{T}$ and $Q \notin \mathcal{T}$ then $\overline{P Q}$ must intersect one of the sides of \mathcal{T} (perhaps at a vertex).
[^0]
[^0]: ${ }^{\dagger}$ without using Theorem 4.11, which we haven't discussed yet anyway

