MAT515 Homework 1

Due Wednesday, September 9

1. Give all the reasons why the geometric figure with five vertices as shown below cannot be a polygon.

- 2. Let A and P be two distinct points on the line AP, and let \mathcal{R} be one of the two rays within \overrightarrow{AP} issuing from A. Show that one and only one of the two rays issuing from P either contains \mathcal{R} or is contained in \mathcal{R} .
- **3**. Let ℓ be a line in the plane, and let *A*, *B*, and *C* be three points in the plane so that *A* and *B* are in the same half-plane with respect to ℓ , and also *B* and *C* are in the same half-plane with respect to ℓ . Prove that *A* and *C* are in the same half-plane with respect to ℓ .
- 4. (a) Prove that any ray \overrightarrow{AB} is convex.
 - (b) Prove that a closed half-plane is convex.
 - (c) Suppose that for each *i*, C_i is convex and also that $C_i \subset C_{i+1}$. There may be a finite number of sets C_i , or there may be infinitely many of them. Prove that the union of all the sets C_i is also convex.
 - (d) Is it always true that the union of convex sets is convex? Provide a proof or give a counterexample.
- 5. Let A, B, and C be three noncolinear points. Explain why the union of the three segments \overline{AB} , \overline{BC} , and \overline{CA} must form a polygon; that is, each pair of segments can only intersect at one of the endpoints.
- 6. Let ℓ_1 and ℓ_2 be parallel lines, and let ℓ_3 be a third line distinct from ℓ_1 . Prove that if ℓ_3 intersects ℓ_1 then it also must intersect ℓ_2 .
- 7. Imagine that the hands of a clock are rays emanating from the center of the clock. What is the measure of the angle between the hands when the time is 8:20?
- **8**. A **triangular region** of the plane is defined to be the intersection of the three angles of a triangle.
 - (a) Show that any triangular region is convex.
 - (b) Let \mathcal{T} be a triangular region in the plane. Show[†] that if $P \in \mathcal{T}$ and $Q \notin \mathcal{T}$ then \overline{PQ} must intersect one of the sides of \mathcal{T} (perhaps at a vertex).

[†]without using Theorem 4.11, which we haven't discussed yet anyway