1/24/2022
What is Analysis and why do 1 care?

$$
\begin{aligned}
& x=2^{p / q} \text { means } \sqrt[q]{2^{p}} \\
& (x)^{q}=\left(2^{p / q}\right)^{q}=2^{p} \\
& x^{q}=2^{p} \\
& x=\left(2^{p}\right)^{1 / q}
\end{aligned}
$$

- There's a lot of subtlies. when x is an integer or rational, these things make sense. But like given $x^{2}=2$, how do we know such a \# exists?
- Can you prove $\sqrt{2}$ is irrational? How do we know $\sqrt{2}$ exists?

Number $=$ length
Pythagoras

Start with $\downarrow, \begin{aligned} & \text { whole }{ }^{\text {\#'s }}, ~ 2,3,4,5, \ldots\end{aligned}$
pretty quickly you'll have to think of ratios w/ these \#'s
like $2 / 5$ or $7 / 3$ or whatever
Then later on came zero and negatives
$\ldots,-2,-1,0,1,2, \ldots$ l integers) $\mathbb{z} \quad 3+7=10 \quad 3-7=-4$
Then we got rationals Q.

$$
\begin{aligned}
3 \cdot 7 & =\frac{7+7+7}{3 \text { times }} \\
7^{3} & =\frac{7 \cdot 7 \cdot 7}{3 \text { times }}
\end{aligned}
$$

So we have $(\mathbb{Z},+, 0)$ and we can do stuffow them.

$$
\begin{align*}
& x+y=y+x \\
& x+(y+z)=(x+y)+z \\
& x(y+z)=x y+x z
\end{align*}
$$ ${\underset{c}{\text { make sure }}}_{\text {wed ont }} 2 \div 3=x$ means x solves $3 x=2$ change te

meaning include O and negatives: $3+x=2$

what is 7^{-2} ?
(Algebraic \#'s,,$+ \cdot$)

Solution to a
paymamial equation

(Real numbers)

$\uparrow \gg$ we cox some surf + gain some stuff
INCZCQCTRC\{CIHC...
and the algebraic operations agrees \#'s such as $2+i$ or $2-i)$
Fundamental idea: each "bigger" set of \#'s
agrees w the smaller ore
often where you louse students in school math \rightarrow your adding a new thing that builds anew otherwise stuck
issue $\frac{1}{2}+\frac{-1}{-2}$
with $q \in \mathbb{Z}, q>0$,
Let's assume that you are "experts" with $\operatorname{gcd}(p, q)=1\}$ $\operatorname{gcd}(p, q)=1\}$
so $\frac{1}{2}$ and
. Q is an ordered field
个 can compare everyone and pot them in order

- A set is ordered means $\forall x, y \in S$, either $x<y, x=y$, or $y<x$ 支 are same But what if we have 3 things? Son in code min equivalent Trichotomy Property For any x, y, z
if $x \leq y$ and $y \leq 2 \Rightarrow x \leq 2$ must have don't go in like a y
circles clock could also say $x \geq y$ or $y \geq x$ bile if $x \geq y$ and $y \geq x$, then $x=y$ \rightarrow SO if $x \geq y$ and $x \neq y$ then write $x>y$
- A field $\#$ is a set with two binary operations t..

So that $\left.\begin{array}{rl}\forall x, y{ }^{\text {tI }} x+y & =y+x \\ x \cdot y & =y \cdot x\end{array}\right\}$ (commutative)
Basically a fred

$$
\begin{aligned}
& \left.\begin{array}{l}
\text { is a set tba putties } \\
\text { all of the }
\end{array} \forall x, y, z \in \mathbb{F} \quad(x+y)+2=x+(y+z)\right\} \text { (associative) } \\
& (x \cdot y) z=x \cdot(y \cdot z)<(\text { associative })
\end{aligned}
$$

There are two elements $0,1 \quad(0 \neq 1) \in \pi \quad$ (identity)

$$
\begin{aligned}
& \forall x \quad x+0=x \\
& x \cdot 1=x
\end{aligned}
$$

$\forall x \in \mathbb{F} \quad \exists-x \in \mathbb{F}$ so that $x+(-x)=0\}$ (Inverses)
$\forall x \in \mathbb{F} \exists x^{-1} \in \mathbb{F}$ so that $x \cdot x^{-1}=1$ multiplicative inverse for every thing except 0
$\forall x, y, z \in \mathbb{F}$

$$
\left.\begin{array}{l}
\in \mathbb{F} \\
x \cdot(y+2)=x \cdot y+x \cdot z
\end{array}\right\} \text { (distributive) }
$$

Ex of another field: $\{0,1\}$
This is \mathbb{N} except
$0+1=1$

$$
\begin{array}{lll}
1+1=0 \\
1+0=1,1000 \text { tevn=000) } & \psi & \psi \\
& 0 & 1
\end{array}
$$

Multiplication: $0.0=0-$| multiply two |
| :---: |
| even |
| even |

$$
0 \cdot 1=1 \cdot 0=0-\text { multiply even } \begin{gathered}
\text { and } 008=\text { even } \\
\hline
\end{gathered}
$$

Often written as \mathbb{Z}_{2}

$$
1 \cdot 1=0-\text { multiply +wo coos's=cod }
$$

(Integers mod 2) $\mathbb{Z}_{3}, \mathbb{Z}_{5}$ are also fields but not z_{4} (something breaks when you observe
you might be thinking,
-SO $\&$ is an ordered field. "Why can't we just work But it is dense with θ ?" Stuff we want is missing. " Q is full of holes" in \mathbb{R}
ie.

1

Archimedian If $r, s \in O$ with $r \angle S$, there is always $p^{\in Q}$ with rapls always a ${ }^{\text {rafialal }}$ btw them

