MAT513 Homework 5

Due Wednesday, March 22

Problems marked with a * are optional/extra credit. However, please at least consider them.

1. Let *K* and *L* be compact subsets of \mathbb{R} . We can define a distance between *K* and *L* as

$$d(K,L) = \inf_{x \in K, \ y \in L} \{ |x - y| \}.$$

- (a) Show that if *K* and *L* are disjoint compact sets, then d(K,L) > 0.
- (b) Give an example of disjoint closed sets A and B for which d(A,B) = 0.
- 2. For a function $f: A \to \mathbb{R}$ with $c \in \overline{A}$, recall that $\lim_{x \to c} L$ means that for every $\varepsilon > 0$ there exists $\delta > 0$ so that $|f(x) L| < \varepsilon$ whenever $0 < |x c| < \delta$ and $x \in A$.
 - Let [x] denote the smallest integer greater than or equal to x (for example, [0.5] = 1 = [1]).
 - (a) Suppose we take $\varepsilon = 1$. What is the largest value of δ we can use in the definition of $\lim_{x \to \pi} \lceil x/2 \rceil$?
 - (b) Suppose we take $\varepsilon = .01$. What is the largest value of δ we can use in the definition of $\lim_{x \to \pi} \lceil x/2 \rceil$?
 - (c) Write a proof, using the definition of limit above, that $\lim_{x\to\pi} \lceil x/2 \rceil = 2$.
 - (d) Consider $g(x) = \frac{1}{\lceil x \rceil}$. A student makes the (false) claim that $\lim_{x \to 4} g(x) = \frac{1}{4}$. Give an explanation of why this cannot be true by exhibiting the largest ε for which there is no δ that satisfies the definition.
- We can extend the definition of limit to include limits which are infinite. Specifically, for f: A → ℝ, we replace the arbitrarily small ε > 0 with an arbitrarily large M > 0 (where c ∈ Ā as usual). Specifically, we say lim_{x→c} = +∞ if, for every M > 0 there exists δ > 0 so that for all x ∈ A, having 0 < |x c| < δ ensures that f(x) > M.
 - (a) Using this definition, prove that $\lim_{x\to 0} \frac{1}{x^2} = +\infty$.
 - (b) Construct an analogous definition for the statement $\lim_{x \to +\infty} f(x) = L$, and use it to write a proof that $\lim_{x \to +\infty} \frac{1}{x} = 0$.
- *4. Recall the definition of Thomae's function:

$$T(x) = \begin{cases} 1 & \text{if } x = 0\\ \frac{1}{q} & \text{if } x = \frac{p}{q}, \text{ with } p \in \mathbb{Z}, q \in \mathbb{N} \text{ and } \gcd(p,q) = 1\\ 0 & \text{if } x \notin \mathbb{Q} \end{cases}$$

Show that $\lim_{x \to 1} T(x) = 0.$

Hint: for each $\delta > 0$, consider the sets $A_{\varepsilon} = \{x \in \mathbb{R} \mid T(x) > \varepsilon\}$. Argue that for every fixed $\varepsilon > 0$, every point in A_{ε} is isolated.

- **5**. Here are several invented definitions which are variations on the definition of continuity. In each case, if you give an example you must justify that it meets the stated criteria.
 - (a) A function f: R→R is onetinuous at c if for every ε > 0, we have |f(x) f(c)| < ε whenever |x c| < 1.
 Give an example of a function g that is onetinuous on all of R, and another function h that is continuous at every c ∈ R, onetinuous at c = 0, but not onetinuous at c = 2, or explain why no such function can exist.
 - (b) A function f: R → R is equaltinuous at c if for every ε > 0, whenever |x c| < ε we also have |f(x) f(c)| < ε.
 Give an example of a function f which is not onetinuous at any c ∈ R, but is equaltinuous at every c ∈ R, or explain why no such function can exist.
 - (c) A function f: R→R is lesstinuous at c∈ R if for every ε > 0, there is a δ with 0 < δ < ε so that |f(x) f(c)| < ε whenever |x c| < δ.
 Find a function f which is lesstinuous on all of R but is nowhwere equaltinuous, or explain why no such function can exist.
 - (d) Is every lesstinuous function continuous? Is every continuous function lesstinuous? Explain.
- 6. Let A and B be subsets of \mathbb{R} , with $f: A \to B$ and $g: B \to \mathbb{R}$. Prove that if f is continuous at $c \in A$ and g is continuous at $f(c) \in B$, then $g \circ f$ is continuous at c. You may use this using any of the characterizations of continuity given in Theorem 4.3.2.
- 7. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function. Show that the set $K = \{x \mid f(x) = 0\}$ is a closed set.
- *8. Let $f: \mathbb{R} \to \mathbb{R}$ satisfy the property that f(x+y) = f(x) + f(y) for every real number x and y. (Such a function is called an **additive homomorphism**.)
 - (a) Show that f(0) = 0 and f(-x) = -f(x) for every $x \in \mathbb{R}$.
 - (b) Let k = f(1), and show that f(n) = kn for all $n \in \mathbb{N}$ (and hence, by the previous part, for all $n \in \mathbb{Z}$). Then show f(r) = kr for all $r \in \mathbb{Q}$.
 - (c) Finally, show that if f is continuous at x = 0, then f is continuous at every $x \in \mathbb{R}$. Consequently, any additive homomorphism of \mathbb{R} which is continuous at one point is a linear function of the form f(x) = kx.
- **9**. A student says that there is no reason we need to define continuity in terms of limits, and that we can just say that *a function is continuous (on an interval) if we can draw the graph from start to finish without ever picking up our pencil (or crayon).*

Write a paragraph or more responding to the student's claim. Write your answer in such a way that it can be understood by a high-school student.