
MAT 513 Solutions to Final Exam
1.15 pts (a) Suppose that for each n ∈ N we have fn : A → R. Define what it means to say that

the sequence fn converges uniformly on A.

Solution: A sequence of functions
{
fn
}

converges uniformly on A to a function f if for
every ε > 0 there is an N ∈ N so that we have |fn(x)− f(x)| < ε for all x ∈ A and all n ≥ N .

(b) Suppose f : A→ R. Define what it means for f to be differentiable on A.

Solution: Given c ∈ A, the derivative at c is defined as f ′(c) = lim
x→c

f(x)− f(c)
x− c

whenever

this limit exists. The function f is differentiable on A if f ′(c) exists for all c ∈ A.

(c) State the Fundamental Theorem of Calculus.

Solution: The fundamental theorem of calculus has two parts:

• Let f : [a, b]→ R be integrable, and suppose F : [a, b]→ R satisfies F ′(x) = f(x) for all
x ∈ [a, b]. Then ∫ b

a

f(x) dx = F (b)− F (a).

• Let f : [a, b] → R be integrable and define G(x) =
∫ b

a

g(t) dt for every x ∈ [a, b]. Then

G is continuous on [a, b], and if g is continuous at c ∈ [a, b], then G is differentiable at c
with G′(c) = g(c).

2.12 pts For each of the following, either provide an example (proof not needed) or a brief expla-
nation of why no such object exists.

(a) A bounded set which contains its infimum but does not contain its supremum.

Solution: The half-open interval [0, 1) does the job, as does a sequence like
{
1− 1

n

}
.

(b) A closed set which is not compact.

Solution: The interval [0,∞) works. Or you could use N or Z or plenty of other things.

(c) A function f : [0, 1]→ R which is differentiable but not integrable.

Solution: This is impossible, since every differentiable function is continuous, and every
continuous function is integrable.

(d) A continuous function f : [0, 1]→ R which is not uniformly continuous on [0, 1].

Solution: Again, impossible. If f is continuous on a compact set, it is uniformly continuous.
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3.10 pts Suppose that an ≥ 0 and
∑∞

n=0 an converges. Prove that for every ε > 0, there is a
subsequence

{
anj

}
of
{
an
}

for which
∑∞

j=1 anj
< ε.

Solution: Let
∑∞

n=0 an = L. This means that the sequence of partial sums sk =
∑k

n=0 an
converges. That is, for every ε > 0, there is an N so that |L− sk| < ε for all k ≥ N . But

|L− sk| =

∣∣∣∣∣L−
k∑

n=0

an

∣∣∣∣∣ =
∣∣∣∣∣
∞∑
n=0

an −
k∑

n=0

an

∣∣∣∣∣ =
∣∣∣∣∣
∞∑

n=k+1

an

∣∣∣∣∣ ; in particular, |L− sN | < ε.

Thus, if we let nj = N + j, that is, set b1 = aN+1, b2 = aN+2, etc., we will ensure that
|
∑
anj
| = |

∑
bj| < ε, as desired.

4.10 pts Let f : R→ R be differentiable.

(a) Show that if f and f ′ are both strictly increasing functions, then f is unbounded.
Hint: the Mean Value Theorem is probably relevant.

Solution: We can apply the Mean Value theorem to f to see that for some c ∈ [0, 1], we have
f ′(c) = f(0)− f(1). Since f is increasing, we have f ′(c) > 0. Also, since f ′ is increasing, for
all x ≥ c, we have f ′(x) > f ′(c) > 0.
Denote f ′(c) = m and f(c) = a, and let g(x) denote the line g(x) = a+m(x−c). For all x > c,
we have f(x) > g(x), since f(c) = g(c) and f ′(x) > g′(x) for x > c. Since g(x) is unbounded,
so is f(x).

(b) Give an example of a bounded differentiable function g : R → R where g is strictly
increasing, but g′ is not (or prove no such function g can exist).

Solution: Several examples are possible, of course. But here is one:
Let g(x) = arctan(x). This function is an increasing function, but g′(x) = 1/(1 + x2) is
increasing for x < 0 and decreasing for x > 0. Here we have a bounded function, since
−π/2 < arctan(x) < π/2 for all x.

Note that if g′(x) is strictly increasing, g(x) must be unbounded. But you weren’t asked
about that.

5.10 pts (a) Use the ε-δ definition to show that f(x) = x2 is continuous at every c ∈ [0, 3].

Solution: Let ε > 0 be arbitrary. We need to show that there is a δ so that whenever 0 <
|x− c| < δ, we have |x2 − c2| < ε.
Let δ = ε

|x+c| . Then we have

|x2 − c2| = |x− c||x+ c| < δ|x+ c| = ε

|x+ c|
|x+ c| = ε

so f(x) is continuous at c.
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(b) Is f uniformly continuous on (0, 3)? Fully justify your answer.

Solution: Yes, it is. Without doing the first part, we can observe that since x2 is a polyno-
mial, it is continuous everywhere. Further, since [0, 3] is compact, every continuous function
defined on [0, 3] is also uniformly continuous on [0, 3]. Since (0, 3) ⊂ [0, 3], f is uniformly
continuous on (0, 3).
Alternatively, observe that ε/(x + c) is at most ε/6 for x and c between 0 and 3. Thus, we
may take δ = ε/6 in the above argument to get a uniform bound on the entire interval.

6.10 pts Suppose f : R→ R is a nondecreasing function. Prove that at each point c ∈ R, f is either
continuous or has a jump discontinuity. (That is, show that no monotone function can
have an essential or removable discontinuity at any point in its domain).

Solution: Fix some c ∈ R, and let us assume (for now) that limx→c− f(x) exists. Then for
any sequence

{
xn
}

with xn → c and xn < c, we know f(xn) converges to L. Since the limit
exists, all such L must be the same number. Furthermore, since f is increasing, L ≤ f(c).

If L = f(c), then f is continuous from below. If not, then f has a jump discontiuity at c.

Now let’s see that limx→c− f(x) exists.

Let L = supx<c { f(x) }. Since L is a least upper bound for this set, for any ε > 0 there is an
x < c with |f(x) − L| < ε. Since f is increasing, if y > x we have f(y) > f(x); this means
that every point y in the interval (x, c) satisfies |f(y)− L| < ε. That is, limx→c− f(x) = L.

The argument above can be trivially modified to show that limx→c+ f(x) exists and is no
smaller than f(x); call this limit M . If L = M , then f is continuous at C; otherwise, there is
a jump discontinuity at c.

7.10 pts (a) Let f be continuous on [a, b] with f(x) ≥ 0 for all x ∈ [a, b]. Suppose that there exists

c ∈ (a, b) for which f(c) > 0. Prove that
∫ b
a
f(x) dx > 0.

Solution: Since f is continuous on [a, b], it is integrable. Furthermore, since f(c) > 0 and f
is continuous, there is an interval about c where f(x) is positive, so the integral of f on that
interval will also be positive.
More precisely, let ε = f(c)/2. Since f is continuous, there is a δ so that for x ∈ (c− δ, c+ δ),
|f(x)− f(c)| < ε, that is, f(x) > f(c)/2. Thus,∫ c+δ

c−δ
f(x) dx >

∫ c+δ

c−δ

f(c)

2
dx = 2δ

f(c)

2
= δf(c) > 0.

Alternatively, you could assume that no such interval existed and see that you would have
a contradiction to the Intermediate Value Theorem (f would have to jump from 0 to f(c)
without taking on values in between).
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(b) Suppose f is nonnegative and integrable on [a, b], and there exists c ∈ (a, b) with
f(c) > 0. Must it be true that

∫ b
a
f(x) dx > 0?

If so, give a proof; if not, give a counterexample.

Solution: No, it does not hold. Let f(x) =

{
0 if x 6= 1

2

1 if x = 1
2

.

Then f is nonnegative and integrable on [0, 1] and f(1/2) > 0, but
∫ 1

0
f(x) dx = 0.

8.10 pts (a) Derive the Taylor series for ln(1 + x). You may either derive it directly or via manip-
ulation of another well-known series (e.g. the geometric series). For what x does the
series converge?

Solution: Since 1
1−x =

∑∞
n=0 x

n, we have 1
1+x

=
∑∞

n=0(−1)nxn. Integrating term by term
gives

ln(1 + x) = c+
∞∑
n=0

(−1)n x
n+1

n+ 1
= c+ x− x2

2
+
x3

3
− x4

4
+ . . . ,

but since ln(1 + 0) = ln(1) = 0, the constant c is 0.

This series converges for x ∈ (−1, 1].
Since the original (geometric) series converges for |x| < 1 and diverges for |x| > 1, so does
the new series. Further, when x = 1 we get the alternating harmonic series, which converges
by the alternating series test. When x = −1, we have the harmonic series, which diverges.

Alternatively, you could derive the Taylor series directly. Taking derivatives gives you
f(0) = 0, f ′(0) = 1, f ′′(0) = −1, f (3)(0) = 2, and in general, f (n)(0) = (−1)n+1(n − 1)!.
This gives the same series as above.
Then you can check the interval of convergence directly by using the ratio test, and check
the two endpoints as above.

(b) Use the first two nonzero terms of the series to estimate ln(3/2).

Solution:
ln(3/2) ≈ 1

2
− 1

2
· 1
22

=
3

8
.

(c) Give an bound for the error in your answer to the previous part (and justify this
bound).

Solution: From Taylor’s remainder formula, we have that for f(x) = ln(1 + x), the exact
error in approximating f(1/2) is

f (3)(c)

3!
· 1
23

for some c ∈ (0, 1/2).

Since f (3)(c) = 2/(1 + c)3, the maximum occurs at c = 0, so the error is at most 1
3
· 1
8
= 1

24
.

(In fact, ln(3/2) ≈ 0.4055 and 1/24 ≈ 0.041667 so this estimate is off by about 0.0305.)
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