- (1) Let A and B be nonempty sets. Prove that $A \times B = B \times A$ if and only if A = B. What if one of A or B is empty?
- (2) For each of the relations below, indicate whether it is reflexive, symmetric, or transitive. Justify your answer.
 - (a) \leq on the set \mathbb{N} .
 - (b) $\perp = \{(l, m) \mid l \text{ and } m \text{ are lines, with } l \text{ perpendicular to } m \}$.
 - (c) \sim on $\mathbb{R} \times \mathbb{R}$, where $(x, y) \sim (z, w)$ if $x + z \leq y + w$.
 - (d) \smile on $\mathbb{R} \times \mathbb{R}$, where $(x,y) \smile (z,w)$ if $x+y \le z+w$.
 - (e) \square on $\mathbb{R} \times \mathbb{R}$, where $(x, y)\square(z, w)$ if x + z = y + w.
- (3) Prove that if R is a symmetric, transitive relation on a set A, and the domain of R is A, then R is reflexive on A.
- (4) Consider the relations \sim and \square on $\mathbb N$ defined by $x \sim y$ iff x + y is even, and $x \square y$ iff x + y is a multiple of 3. Prove that \sim is an equivalence relation, and that \square is not.
- (5) For each $a \in \mathbb{R}$, let $P_a = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y = a x^2\}$.
 - (a) Sketch the graph of P_{-2} , P_0 , and P_1 .
 - (b) Prove that $\{P_a \mid a \in \mathbb{R}\}$ forms a partition of $\mathbb{R} \times \mathbb{R}$.
 - (c) Describe the equivalence relation associated with this partition.