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We’re proving Sard’s Theorem!

Sard’s Theorem 1. If U ⊆ Rn is open and f : U → Rp is smooth, with C as
the critical points for the function f , then the image f(C) has measure zero.

Let C =critical points and let Ck = {x ∈ C|partialsvanishtokthorder}. We
prove this using three steps:

Step 1 f(C− C1) has measure zero. We proved this painstakingly last class.

Step 2 f(Ck − Ck+1) has measure zero.

Step 3 f(Cj) has measure zero for “large enough” j.

We’re now gonna prove step 2! Let

w(x) =
∂kf

∂xn1
. . . ∂xnk

(x)

so that w(x̄) = 0 but
∂w

∂x1

∣∣∣∣
x̄

6= 0. We can choose the coordinates without loss

of generality so that this is so.
We now create h : U → Rn where h(x) = (w(x1), x2, x3, . . . , xn) so h is a dif-

feo of neighborhood Vx̄ to neighborhood V ′. Note that h((̄x)) = (0, x̄2, x̄3, . . . , x̄n).
We want to claim that h(Ck ∩ V ) ⊆ {0} × Rn−1 because h makes stuff around

h(x̄) straighter, since
∂w

∂x1

∣∣∣∣
x̄

6= 0.

To give an example: let f(x) = (x− 1)5. Then we see that f (4)(1) = 0 but
f (5)(1) = 5!. In this case, w = f (4) and x̄ = 1, because that’s like the same as
our definition. The “straightness” made just means that it has a constant slope
around its neighborhood.

Right, back to the proof! We can straighten it our one dimension less. Let
g = f ◦ h−1, g : Rn → Rp, or g : R1 × Rn−1 → Rp. Let ḡ : {0} × Rn−1 → Rp,
which is g restricted to that x1 = 0 slice of V ′, which is that straight-line
neighborhood of h(x̄). By induction, the measure of the critical values of ḡ is 0.
(Since partials ≤ kth order have measure 0).
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Keep reducing down dimensions. ḡ◦h((Ck−Ck−1)∩V ) = f((Ck−Ck−1∩V ).
As before, we can pick a countable number of V s to make up C− Ck−1, so the
critical values have measure 0.

Onto step 3! Let In ⊆ Rn be a cube of side length δ. We want to show that,
for k large, f(Ck ∩ In) has measure 0. This is the heart of the artichoke, after
pealing all the layers away inductively.

Forgive me if this gets confusing, but we’re gonna go into analysis a wee bit.
Note that k > n

p−1 .
We have f : U → Rp being smooth, and In is compact, so we can ap-

ply Taylor’s Theorem: f(x + h) = f(x) + R(x, h), where R is the remainder.
‖R(x, h)‖ < c · ‖h‖k+1 where c is the max (k + 1)th derivative of f on In. Ba-
sically, this says that, when h is small, f(x+ h) = f(x) plus a really really tiny
part, so f doesn’t move a whole lot.

We’re basically done, but we’re gonna do more analysis anyway. Chop up In

into rn cubes of side δ/r. Any point in I1, one of our little cubes, is x+ h with
‖h‖ <

√
n δr . This just means the points in the little cube are close together.

f(I1) isn’t distorted (which is what Taylor’s Theorem says) and is no bigger
than a

rk+1 where a = 2c(
√
nδ)k+1.

WHATEVER! The point is that f can’t squish up our little cube too much.
That means f(Ck ∩ In) isn’t too bad either. The sum of the cubes isn’t too
stretched. Its rn cubes, with total volume < rn

(
a

rk+1

)p
= aprk−(k+1)p. Now,

let k be large, and this gets pretty small as r goes to ∞.
Sorry there’s no pictures. If you want a picture, look at figure 5 on page 17

of Milnor. The full proof of Sard’s Theorem is Section Three of Milnor. Don’t
be discouraged if you didn’t get it the first time; I still don’t totally get it!
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