SARD'S THM

Let $U \subseteq R^n$ open, $f: U \to R^P$ smooth

C= $\{x | rank \ Df_x < p\}$ =critical points of f, then f(c) has measure 0 in R^P .

The case where $n \le p$ is easy, but we'll do it hard way anyway.

PROOF/ By induction on n.

If n=0, then U is a point, so trivial.

Proof in 3 steps

Divide C into subsets by how many derivatives vanish.

Example:

In n=1, p=1

$$f(x) = x^4(x-1)^3(x-2)^2$$

$$C = \{0,1,2\}$$

 $\{0,1,2\} = C_1 = \text{points where } f' = 0.$

$$\{0,1\}=C_2=\text{points where } f'=0, f''=0.$$

$$\{0\}$$
= \mathcal{C}_3 =points where $f'=0, f''=0, f'''=0$

$$\mathcal{C}\supset\mathcal{C}_1\supset\mathcal{C}_2\supset\mathcal{C}_3\supset\cdots$$

$$C_1 = \{x | Df_x = 0\}$$

 $C_k = \{x | all \ partials \ to \ order \ k = 0\}$

STEP 1: Show that $f(C - C_1)$ has measure 0;

STEP 2: Show that $f(C_i - C_{i+1})$ has measure 0;

STEP 3: Show that $meas(f(C_k))=0$ for k large.

- 1. Going from $C_1 \rightarrow C$ doesn't add measure to critical values;
- 2. $C_k \rightarrow C_{k+1}$ doesn't lose measure to critical values;
- 3. For k big (k>n/p-1), meas $(f(C_K)) = 0$.

Colloquial SART THM: If f wiggles too much, it ain't smooth.

PF/ assume $p \ge 2$ (since if p=1, $C = C_1$)

Rely on Fubini

If $A \subset \mathbb{R}^p$ has measure 0, if on every hyperplane $\{C\} \times \mathbb{R}^{p-1}$, the intersection $A \cap \{C\} \times \mathbb{R}^{p-1}$ has p-1 dim measure 0.

For each point \bar{x} in $C-C_1$, we want to find $V \subset R^n$ open, $\bar{x} \in V$, so that $f(V \cap C)$ has measure 0, countably many such V does the trick.

Since $\bar{x} \in C - C_1$, $\frac{\partial f_j}{\partial x_i} \neq 0$ at \bar{x} .

WLOG: $\frac{\partial f_1}{\partial x_1} \neq 0$ at \bar{x} . (It doesn't have to be x_1 , but we can choose x_1 .) Let h: U $\rightarrow R^n$.

$$h(x) = (f_1(x_1), x_2, x_3, \dots, x_n),$$
 so $dh_{\bar{x}}$ is nonsingular.

h: $V_{\overline{X}} \to V'$

 \bar{x} near C or in C or whatever

Take the whole neighborhood onto the neighborhood.