MAT360 Solutions to Midterm

- 1. Consider the following interpretation of the terms "point", "line", and "incidence":
 - A point is any pair of real numbers (x, y) such that x and y are not both zero. That is, any point in \mathbb{R}^2 except the origin.
 - A line is the set of points (*x*, *y*) as above for which there are real numbers *a* and *b* not both zero such that either

$$(x-a)^2 + (y-b)^2 = (a^2 + b^2)$$
 or $ax = by$.

That is, a line is any circle or straight line passing through the origin in \mathbb{R}^2 .

- A point is incident with a line if it satisfies the corresponding equation.
- (a) 6 points Does this define an incidence geometry? That is, do axioms I1, I2, and I3 hold? Fully justify your answer.¹

Solution: Throughout, we will use line or point to refer to the objects as defined in the model, and line, point, or circle to refer to the "usual" Euclidean meanings in \mathbb{R}^2 .

First, let's check I1: Given two points $P = (x_1, y_1)$ and $Q = (x_2, y_2)$, we need to confirm that they determine a unique line. There are two cases:

First, suppose that *P* and *Q* are collinear with the origin in \mathbb{R}^2 . Either the line \overrightarrow{PQ} is vertical, in which case $y_1 = y_2 = 0$ and so *P* and *Q* lie on the line y = 0 (that is, a = 0 and b = 1), or \overrightarrow{PQ} has slope *m*, in which case the line is y = mx (that is, a = m and b = 1). Thus, if \overrightarrow{PQ} is of line type, it is not possible to find a circle in \mathbb{R}^2 passing through *P*, *Q* and the origin.

In the other situation, P, Q, and the origin are not collinear in \mathbb{R}^2 , so there is a unique circle containing all three (see footnote). In either case, there is a unique line defined by P and Q.

The next two are easy. Axiom I2 holds, since every line has infinitely many points on it. Axiom I3 also holds easily. For example, the points (1,0), (-1,0), and (0,1) do not lie on the same line.

Since axioms **I1**, **I2**, and **I3** hold, this does define an incidence geometry. In fact, with suitable definitions of between and congruence, all of the other axioms except the continuity and parallel axioms hold.

¹It might be useful for you to remember that for any three distinct non-collinear points in \mathbb{R}^2 , there is a unique circle on which they all lie. Also, C.S. Lewis once said the following line: "The next best thing to being wise oneself is to live in a circle of those that are."

(b) 4 points Does this model define a Euclidian, elliptic, or hyperbolic geometry (or none of the those)? Again, fully justify your answer.

Solution:

Given a line l and a point P not on l, we must determine how many lines passing through P which are parallel to l.

If *l* is of circle type, then there are two possibilities. First, if *P* lies on the line *m* which is tangent to *l* at the origin, lines *l* and *m* are parallel. There can be no other parallel line (all other circles or lines passing through *P* will intersect *l*). In the other possibility, there is a unique circle through *P* which will be tangent to *l* at the origin. In both cases, there is a unique line through *P* parallel to *l*.

In case *l* is of line type, then the line in \mathbb{R}^2 connecting *P* to the origin is a line *m* parallel to *l*. But also the circle which passes through *P* and is tangent to *l* at the origin is another line *n* which is parallel to *l*. Thus, there are two lines parallel to *l* through *P*.

Since we sometimes have two parallels and sometimes have a unique one, the geometry is not hyperbolic, Euclidean, or elliptic.

2. 10 points Rewrite the following proof, supplying valid reasons for each of the steps.

In any triangle $\triangle ABC$, if the perpendicular bisectors of two of the sides of $\triangle ABC$ meet, all three perpendicular bisectors of the three sides meet in a common point *X*, called the *circumcenter*.

Proof: Let *M*, *N*, and *P* be the midpoints of sides \overline{AB} , \overline{BC} , and \overline{CA} respectively. Let the perpendicular bisector of \overline{AB} meet that of \overline{BC} at a point *X*. We must show that \overline{PX} is perpendicular to \overline{AC} .

Now, $\triangle MXB \cong \triangle MXA$ and $\triangle NXB \cong \triangle NXC$. Thus $\overline{CX} \cong \overline{AX}$, and so $\triangle CPX \cong \triangle APX$. Therefore $\overrightarrow{PX} \perp \overline{AC}$.

Solution: Let *M*, *N*, and *P* be the midpoints of sides \overline{AB} , \overline{BC} , and \overline{CA} respectively. Such points exist because we have shown that every segment has a unique midpoint.

Erect the perpendicular to \overline{AB} at M, and the perpendicular to \overline{BC} at N. Such lines exist as a consequence of axiom C4. Let these meet at a point X (we have taken that two of the bisectors meet as a hypothesis). We must show that \overline{PX} is the perpendicular bisector of \overline{AC} ; that is, that $\overline{PX} \perp \overline{AC}$.

Since $\overline{MX} \perp \overline{AB}$, angles $\angle AMX$ and $\angle BMX$ are both right, and consequently are congruent. Furthermore, by the definition of midpoint, $\overline{AM} \cong \overline{BM}$, and \overline{MX} is congruent to itself. Thus we can apply **SAS**, to get $\triangle MXB \cong \triangle MXA$. Consequently $\overline{AX} \cong \overline{BX}$. By similar reasoning, we also have $\triangle NXB \cong \triangle NXC$ and thus $\overline{BX} \cong \overline{CX}$.

By transitivity of congruence (axiom C2), we have $\overline{CX} \cong \overline{AX}$. Since we also have $\overline{CP} \cong \overline{AP}$ (definition of midpoint) and $\overline{PX} \cong \overline{PX}$, we can apply SSS to see that $\triangle CPX \cong \triangle APX$.

Thus angles $\angle CPX$ and $\angle APX$ are congruent. Since they are also supplementary angles, we have shown that they must be right angles.

Therefore $\overrightarrow{PX} \perp \overrightarrow{AC}$, as desired.

Consequently, $\overline{EG} \cong \overline{FG}$ as desired.

3. 10 points Let $\Box ABCD$ be a Saccheri quadrilateral, with right angles at A and B, and $\overline{AD} \cong \overline{BC}$ as usual. Also, let E and F be the midpoints of \overline{AD} and \overline{BC} respectively, and let G be the point of intersection of \overline{EC} and \overline{DF} . Prove that $\overline{EG} \cong \overline{FG}$.

Solution: Because $\Box ABCD$ is Saccheri, we know that the summit angles $\angle EDC$ and $\angle FCD$ are congruent.

Furthermore, since *E* and *F* are midpoints of congruent segments, we have $\overline{ED} \cong \overline{FC}$. Observing that \overline{CD} is congruent to itself, we can apply **SAS** to see that triangles $\triangle EDC$ and $\triangle FCD$ are congruent. This tells us that $\angle CDF \cong \angle ECD$. Now we use the congruence of

the summit angles again, together with angle subtraction, to conclude that $\angle EDG \cong \angle FCG$. Next, notice that $\angle EGD$ and $\angle FGC$ are vertical angles, and hence are congruent. This, together with the previous result and the fact that $\overline{ED} \cong \overline{FC}$, enables us to use **AAS** to see that $\triangle EGD \cong \triangle FGC$.

4. 10 points Prove the Hypotenuse-Leg congruence condition. That is, suppose $\triangle ABC$ and $\triangle PQR$ are right triangles with right angles at $\angle B$ and $\angle Q$. Furthermore, suppose that $\overline{AB} \cong \overline{PQ}$ and $\overline{AC} \cong \overline{PR}$. Show that $\triangle ABC \cong \triangle PQR$. (Hint: an isosceles triangle could be helpful.)

Solution: Find a point D on \overrightarrow{BC} so that $C \star B \star D$ with $\overline{QR} \cong \overline{BD}$. Since $\overline{BD} \cong \overline{QR}$, $\angle B \cong \angle Q$, and $\overline{AB} \cong \overline{PQ}$, we have $ABD \cong \triangle PQR$ by SAS. Thus $\overline{AD} \cong \overline{PR} \cong \overline{AC}$.

Therefore $\triangle ADC$ is isosceles. Since the base angles of an isosceles triangle are congruent, we have $\angle C \cong \angle D \cong \angle R$.

Now we have $\overline{AC} \cong \overline{PR}$, $\angle C \cong \angle R$, and $\overline{BC} \cong \overline{QR}$, we have $\triangle ABC \cong \triangle PQR$ by **SAS**.

5. 10 points Prove that the Euclidean parallel postulate holds if and only if the following statement holds:

Let lines l and m be parallel, and let line t be perpendicular to l. Then t is also perpendicular to m.

Solution: Let's call the property that $I \parallel m$ and $t \perp I \implies t \perp m$ by the name "property S".

First, let's show that Euclidean geometry implies property S holds.

Assume $\overrightarrow{l} \parallel \overleftarrow{m}$ and $t \perp l$. Now, since the geometry is Euclidean, *t* must intersect *m*, since if not, both lines *t* and *l* would be parallel to *m*. But since in Euclidean geometry the converse to the alternate interior angle theorem holds, the alternate interior angles formed by *l*, *t*, and *m* must be equal. Consequently $t \perp m$. So property **S** holds.

Now we show that if property S holds, the geometry must be Euclidean. One way to do this is suppose that we have a pair of parallel lines *l* and *m*. Pick two points *P* and *Q* on *l*, and erect perpendiculars *t* and *r* at these points. By property S, $t \perp m$ and $r \perp m$. But since the resulting quadrilateral has four right angles, it is a rectangle. If rectangles exist, the geometry is Euclidean.

There are, of course, many other ways to prove both of these implications.

6. 10 points Let *D* be any point interior to triangle $\triangle ABC$. Prove that the measure of $\angle BAC$ is less than the measure of $\angle BDC$.

Solution: Extend \overline{CD} to a point \overline{E} on \overline{AB} . We have $A \star E \star B$ by the crossbar theorem, and so angle $\angle DEB$ is exterior to $\triangle ACE$. Thus, by the exterior angle theorem, $\angle BAC < \angle DEB$. Also, $\angle BDC$ is exterior to triangle $\triangle BED$, so we have $\angle BAC < \angle BED < \angle BDC$.

Most people instead constructed \overrightarrow{AD} , meeting \overrightarrow{BC} at a point *F*. Then they applied the exterior angle theorem to see that $\angle CAD < \angle CDF$ and $\angle BAD < \angle BDF$. Finally, they used angle addition to get the desired conclusion:

$$\angle BAC = \angle CAD + \angle BAD < \angle CDF + \angle BDF = \angle BDC$$

That works, too.