Our goal is to try to understand the behaviour of $f(z)=z^{2}$ graphically. First try: Let's take a rectangular grid in \mathbb{C} and see what f does to it.

Our goal is to try to understand the behaviour of $f(z)=z^{2}$ graphically.
First try: Let's take a rectangular grid in \mathbb{C} and see what f does to it.

Our goal is to try to understand the behaviour of $f(z)=z^{2}$ graphically. First try: Let's take a rectangular grid in \mathbb{C} and see what f does to it.

Our goal is to try to understand the behaviour of $f(z)=z^{2}$ graphically. First try: Let's take a rectangular grid in \mathbb{C} and see what f does to it.

Does this convey everything? How do the number of lines compare between right and left?

Let's try again, looking just at the image of the right half-plane $(\operatorname{Re}(z)>0)$ first.
Now add in the left half-plane.

Let's try again, looking just at the image of the right half-plane $(\operatorname{Re}(z)>0)$ first. Now add in the left half-plane.

[^0]Let's try again, looking just at the image of the right half-plane $(\operatorname{Re}(z)>0)$ first. Now add in the left half-plane.

It should be clear that the image is covered twice by the source grid.

Since $f\left(r e^{i \theta}\right)=r e^{2 i \theta}$, the image of a polar grid is quite easy to understand.

Here we color $0 \leqslant \theta \leqslant \pi$ in blue and $-\pi \leqslant \theta \leqslant 0$ in red.

Here's a slightly different approach. Start with a grid in the image plane, and see if we can find its preimage. This is done in detail in the textbook (§2.14).

Since $f(x+i y)=\left(x^{2}-y^{2}\right)+(2 x y) i=u+i v$, it can be shown vertical lines of the form $u=c(c>0)$ are the image of branches of hyperbolæ $x^{2}-y^{2}=c$, and horizontal lines $v=k$ are the image of branches of hyperbolæ $x y=k / 2$.

Here's a slightly different approach. Start with a grid in the image plane, and see if we can find its preimage. This is done in detail in the textbook (§2.14).

Since $f(x+i y)=\left(x^{2}-y^{2}\right)+(2 x y) i=u+i v$, it can be shown vertical lines of the form $u=c(c>0)$ are the image of branches of hyperbolæ $x^{2}-y^{2}=c$, and horizontal lines $v=k$ are the image of branches of hyperbolæ $x y=k / 2$.

Here's a slightly different approach. Start with a grid in the image plane, and see if we can find its preimage. This is done in detail in the textbook ($\S 2.14$).

Since $f(x+i y)=\left(x^{2}-y^{2}\right)+(2 x y) i=u+i v$, it can be shown vertical lines of the form $u=c(c>0)$ are the image of branches of hyperbolæ $x^{2}-y^{2}=c$, and horizontal lines $v=k$ are the image of branches of hyperbolæ $x y=k / 2$.

Here's a slightly different approach. Start with a grid in the image plane, and see if we can find its preimage. This is done in detail in the textbook ($\S 2.14$).

Since $f(x+i y)=\left(x^{2}-y^{2}\right)+(2 x y) i=u+i v$, it can be shown vertical lines of the form $u=c(c>0)$ are the image of branches of hyperbolæ $x^{2}-y^{2}=c$, and horizontal lines $v=k$ are the image of branches of hyperbolæ $x y=k / 2$.

Here's a slightly different approach. Start with a grid in the image plane, and see if we can find its preimage. This is done in detail in the textbook (§2.14).
Since $f(x+i y)=\left(x^{2}-y^{2}\right)+(2 x y) i=u+i v$, it can be shown vertical lines of the form $u=c(c>0)$ are the image of branches of hyperbolæ $x^{2}-y^{2}=c$, and horizontal lines $v=k$ are the image of branches of hyperbolæ $x y=k / 2$.

Here's a slightly different approach. Start with a grid in the image plane, and see if we can find its preimage. This is done in detail in the textbook (§2.14).
Since $f(x+i y)=\left(x^{2}-y^{2}\right)+(2 x y) i=u+i v$, it can be shown vertical lines of the form $u=c(c>0)$ are the image of branches of hyperbolæ $x^{2}-y^{2}=c$, and horizontal lines $v=k$ are the image of branches of hyperbolæ $x y=k / 2$.

Here's a slightly different approach. Start with a grid in the image plane, and see if we can find its preimage. This is done in detail in the textbook (§2.14).
Since $f(x+i y)=\left(x^{2}-y^{2}\right)+(2 x y) i=u+i v$, it can be shown vertical lines of the form $u=c(c>0)$ are the image of branches of hyperbolæ $x^{2}-y^{2}=c$, and horizontal lines $v=k$ are the image of branches of hyperbolæ $x y=k / 2$.

Yet another approach: Draw the graph of $|f(z)|$ as a surface in \mathbb{R}^{3}, but also color it to indicate the argument of $f(z)$. This is a little confusing, since if there is a place on the surface with the same color at the same height, these represent the same image point.

9
See also the Complex Function Viewer at http://davidbau.com/conformal/
For variety, here is the same with $f(z)=z^{2}-1$.

Yet another approach: Draw the graph of $|f(z)|$ as a surface in \mathbb{R}^{3}, but also color it to indicate the argument of $f(z)$. This is a little confusing, since if there is a place on the surface with the same color at the same height, these represent the same image point.

See also the Complex Function Viewer at http://davidbau.com/conformal/ For variety, here is the same with $f(z)=z^{2}-1$.

[^0]: It should be clear that the image is covered twice by the source gri

