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Chapter 1: Complex Numbers

Definition, Sums, Products
z = x + iy ∈ C, x , y ∈ R, x = Re z , y = Im z , i2 = −1
z = x + iy ,w = a + ib ∈ C

z + w = (x + iy) + (a + ib) = (x + a) + i(y + b)
zw = (x + iy)(a + ib) = xa − yb + i(xb + ya)

Algebraic Properties
commutative, associative, distributive laws hold
z + 0 = z , z · 1 = z , each z 6= 0 is (uniquely) invertible
zw = 0⇔ (z = 0 or w = 0)
in other words: C is a field

Vectors, Moduli, Triangle Inequality, Complex Conjugates
z = x + iy 6= 0 can be thought as being a vector from 0 to (x , y) in the
plane
|z | :=

√
(Re z)2 + (Im z)2 (euclidean length of vector from 0 to

(Re z , Im z))
|z + w | ≤ |z |+ |w |, |z + w | ≥ ||z | − |w ||
z = Re z − i Im z , |z |2 = zz
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Chapter 1: Complex Numbers

Exponential Form, Products, Powers
For z 6= 0: z = r e iθ, r = |z | > 0, θ ∈ R
e iθ = cos θ+ i sin θ, thus θ is only unique up to adding a multiple of 2π.
z = r e iθ, w = s e iφ, then zw = rs e i(θ+φ)

zn = rn e inθ

Arguments, Roots of Complex Numbers
arg z = {θ ∈ R : z = |z |e iθ} = θ0 + 2πn, n ∈ Z, θ0 one possible
argument of z
z = re iθ 6= 0, all nth-roots of z are ck = r 1

n exp
(
i
(
θ
n + 2πk

n
))

, where
k = 0, . . . , n − 1
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Chapter 1: Complex Numbers

Basic Topology:
Neighbourhood, Deleted Neighbourhood

ε > 0, ε-neighbourhood of z ∈ C is

Bε(z) = {w ∈ C : |w − z| < ε}

deleted ε-neighbourhood:

Ḃε(z) = {w ∈ C : 0 < |w − z| < ε} = Bε(z) \ {z}

S ⊂ C, z ∈ C
z interior point of S: ∃ ε > 0 s.t. Bε(z) ⊂ S
z exterior point of S: ∃ ε > 0 s.t. Bε(z) ∩ S = ∅
z boundary point of S: z is neither interior nor exterior point of S, i.e.
∀ ε > 0 (Bε(z) ∩ S 6= ∅ and Bε(z) ∩ (C \ S) 6= ∅), boundary of S
(denoted ∂S) is the set of all boundary points of S
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Chapter 1: Complex Numbers

Basic Topology (cont.)
S ⊂ C

S is open if ∂S ∩ S = ∅, i.e. each z ∈ S is an interior point of S
S is closed if ∂S ⊂ S, i.e. C \ S is open
If S is open, S is called connected if any two points z, w ∈ S can be
joined by a polygonal line in S
S is a domain, if S is non-empty, open, connected
a domain together with some (or all) of its boundary points is a region
S is bounded if S ⊂ BR(0) for some R > 0
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Chapter 2: Analytic Functions

Limits

lim
z→z0

f (z) = w0 ⇔

∀ ε > 0 ∃ δ > 0∀ z ∈ C : 0 < |z − z0| < δ ⇒ |f (z)− w0| < ε

Riemann Sphere (Limits involving ∞)
Riemann Sphere: Wrap C on a sphere sitting above the origin. Add ∞
as the north pole
limz→z0 f (z) =∞, if limz→z0

1
f (z) = 0

limz→∞ f (z) = w0, if limz→0 f
( 1

z
)
= w0

limz→∞ f (z) =∞, if limz→0
1

f ( 1
z )

= 0
Continuity, Derivatives

f : D → C continuous at z0 ∈ D if limz→z0 f (z) = f (z0)

f : D → C, z0 ∈ D interior point of D, f differentiable at z0 if

f ′(z0) = lim
z→z0

f (z)− f (z0)

z − z0

exists
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Chapter 2: Analytic Functions

Cauchy-Riemann Equations (both in rectangular and polar
coordinates)

f (z) = u(x , y) + iv(x , y): ux = vy and uy = −vx
f (re iθ) = u(r , θ) + iv(r , θ): rur = vθ and uθ = −rvr

Analytic Functions
f is analytic in an open set S if f is differentiable at every z ∈ S.
f is entire if f is analytic in C.
f analytic in domain D, f ′(z) = 0 for all z ∈ D, then f is constant

Harmonic Functions
u(x , y) harmonic in a domain D ⊂ R2 if

uxx (x , y) + uyy (x , y) = 0

for all (x , y) ∈ D
f = u + iv analytic, then both u and v are harmonic
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Chapter 2: Analytic Functions

Identity Theorem / Coincidence Principle
An analytic function in a domain D is uniquely determined by its values
in a subdomain or on a line segment contained in D.
Most general version: D ⊂ C domain, f , g : D → C analytic. If
{z ∈ D : f (z) = g(z)} has an accumulation point in D, then f = g .

Reflection Principle: Let D be a domain which contains a segment of
the real axis and whose lower half is the reflection of the upper half
(i.e. z ∈ D iff z ∈ D). Let f be analytic in D. Then f (z) = f (z) for
all z ∈ D if and only if f (x) is real for each point x on the segment.
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Chapter 3: Elementary Functions

The Exponential Function
ex+iy = ex e iy = ex cos(y) + iex sin(y)
ez =

∑∞
n=0

zn

n!
exp is entire and 2πi-periodic

The Logarithmic Function
log z = ln |z |+ i arg z
e log z = z

Branches and Derivatives of Logarithms
α ∈ R, restrict arg z so that α < arg z < α+ 2π, then

log z = ln |z |+ iθ (|z | > 0, α < θ < α+ 2π)

is a branch of the logarithm and analytic in the slit plane
{re iθ : r > 0, α < θ < α+ 2π} with derivative 1

z
principle branch Log for α = −π
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Chapter 3: Elementary Functions

Power Functions
z 6= 0, c ∈ C: zc = ec log z

Given a branch of log, zc becomes an analytic function in
{re iθ : r > 0, α < θ < α+ 2π} with derivative czc−1

principle branch of zc : choose Log
Trigonometric Functions, Hyperbolic Functions

sin z = eiz−e−iz

2i =
∑∞

n=0
(−1)nz2n+1

(2n+1)!

cos z = eiz+e−iz

2 =
∑∞

n=0
(−1)nz2n

(2n)!

sinh z = ez−e−z

2 =
∑∞

n=0
z2n+1

(2n+1)!

cosh z = ez+e−z

2 =
∑∞

n=0
z2n

(2n)!

Inverse Trigonometric and Hyperbolic Functions
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Chapter 4: Integrals

Derivatives of Functions w : [a, b]→ C, w(t) = u(t) + iv(t)

w ′(t) = u′(t) + iv ′(t)

Definite Integrals of such Functions
∫ b

a
w(t)dt =

∫ b

a
u(t)dt + i

∫ b

a
v(t)dt

Contours
arc: γ : [a, b]→ C continuous. Also {γ(t) : t ∈ [a, b]} is called arc
simple arc (Jordan arc): γ is also injective
simple closed curve (or Jordan curve): γ is simple except that
γ(a) = γ(b)
γ is positively oriented, if it is in counterclockwise direction
if γ′ exists on [a, b] and is continuous, then gamma is called
differentiable arc
if γ is differentiable and γ′(t) 6= 0 for all t, then γ is called smooth
A contour (or piecewise smooth arc) is an arc consisting of a finite
number of smooth arcs joined end to end
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Chapter 4: Integrals

Contour Integral: C : [a, b]→ C contour, f (C(t)) piecewise
continuous, then

∫

C
f (z)dz =

∫ b

a
f (C(t))C ′(t)dt

Upper Bounds for Moduli of Contour Integrals
length L of contour C : [a, b]→ C is L = L(C) =

∫ b
a |C ′(t)|dt.

C contour of length L, f piecewise continuous on C with |f (z)| ≤ M
for all z ∈ C , then ∣∣∣∣

∫

C
f (z)dz

∣∣∣∣ ≤ LM

Antiderivatives: f continuous in domain D. Then
f has antiderivative F
Contour integrals of f along contours lying entirely in D only depend
on start and end point
contour integrals of f along closed contours lying entirely in D are all 0

are equivalent
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Chapter 4: Integrals

Cauchy-Goursat Theorem: Let C be a simple closed contour and f
analytic on C and inside C . Then

∫

C
f (z)dz = 0.

Simply and Multiply Connected domains
A domain D is simply connected if every simple closed contour lying in
D only encloses points of D, i.e. “D has no holes”.
If f is analytic in a simply connected domain D, then

∫
C f (z)dz = 0 for

every closed contour lying in D.
A domain D is multiply connected, if it is not simply connected.
C simple closed contour in counterclockwise direction, Ck ,
k = 1, . . . , n, simple closed contours lying entirely in the interior of C ,
all in clockwise direction, f analytic on all of these contours and in the
multiply connected domain spanned by these curves, then

∫

C
f (z)dz +

n∑

k=1

∫

Ck

f (z)dz = 0
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Chapter 4: Integrals

Cauchy Integral Formula: Let f be analytic everywhere on and inside
a simple closed contour C , taken in positive sense. If z is any point
interior to C , then

f (z) = 1
2πi

∫

C

f (ζ)
ζ − z dζ.

Extended Cauchy Integral Formula: C and z as above, n ∈ N, then

f (n)(z) = n!
2πi

∫

C

f (ζ)
(ζ − z)n+1 dζ.
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Chapter 4: Integrals

Consequences
Analytic functions have derivatives of all orders.
Morera’s theorem: Let f be continuous on a domain D. If∫

C f (z)dz = 0 for every closed contour C in D, then f is analytic.
Cauchy’s inequality: f analytic inside and on a positively oriented circle
CR of radius R centred at z0, Mr = max|z−z0|=R |f (z)|, then for all
n ∈ N ∣∣∣f (n)(z0)

∣∣∣ ≤ n!MR
Rn .

Liouville’s Theorem and the Fundamental Theorem of Algebra
Liouville’s theorem: A bounded entire function is constant.
Fundamental Theorem of Algebra: Every non constant complex
polynomial has at least one zero.

Maximum Modulus Principle: If f is analytic and not constant in a
given domain D, then |f (z)| has no maximum value in D.
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Chapter 5: Series

Sequences, Series, Convergence
sequence (zn)n∈N converges to z if

∀ε > 0 ∃nε ∈ N∀n ≥ nε : |zn − z | < ε

series:
∑∞

n=1 zn, SN =
∑N

n=1 zn. Series converges to S if (SN)N∈N
converges to S
series

∑∞
n=1 zn is absolutely convergent if

∑∞
n=1 |zn| converges

power series:
∑∞

n=0 zn(z − z0)n

Taylor Series
f analytic in disk BR0(z0), then

f (z) =
∞∑

n=0
an(z − z0)

n for all z ∈ BR0(z0)

where
an =

f (n)(z0)

n! .

if z0 = 0, the Taylor Series is called Maclaurin Series
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Chapter 5: Series

Laurent Series: f analytic in {z ∈ C : R1 < |z − z0| < R2}, C simple
closed, positively oriented contour in the annulus, then for z in that
annulus

f (z) =
∞∑

n=0
an(z − z0)

n +
∞∑

n=1

bn
(z − z0)n

where

an =
1

2πi

∫

C

f (z)
(z − z0)n+1 dz and bn =

1
2πi

∫

C

f (z)
(z − z0)−n+1 dz

Absolute and Uniform Convergence of Power Series
There exists a largest ball in which a power series converges.
If a power series converges at z1 6= z0, then it is absolutely convergent
for every z with |z − z0| < |z1 − z0|.
R radius of convergence, R1 < R, then the power series is uniformly
convergent on {z ∈ C : |z − z0| ≤ R1}.
Uniform convergence: The choice of nε in the convergence statement
does not depend on the point z where convergence is investigated.
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Chapter 5: Series

Further Properties of Power Series S(z) =∑∞
n0 an(z − z0)n

Power series represent continuous functions on their disk of
convergence.
Power series are analytic on their disk of convergence with

S ′(z) =
∞∑

n=1
nan(z − z0)

n−1.

The integral of a power series along some contour C inside the disk of
convergence is

∫

C
S(z)dz =

∞∑

n=0
an

∫

C
(z − z0)

ndz .

Power series representations are unique.
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Chapter 6: Residues and Poles

Isolated Singular Points: A singular point z0 of an analytic function f
is isolated if there exists some ε > 0 such that there is no other
singular point in Ḃε(z0).
Residues: z0 isolated singular point of an analytic function f ,

f (z) =
∞∑

n=0
an(z − z0)

n +
∞∑

n=1

bn
(z − z0)n

Laurent Series of f in Ḃε(z0). The coefficient b1 is called residue of f
at z0

Res
z=z0

f (z) = b1 =
1

2πi

∫

C
f (z)dz .

Cauchy’s Residue Theorem: Let C be a simple closed contour,
described in positive sense. If f is analytic inside and on C except for
a finite number of singular points zk (k = 1, . . . , n) inside C , then

∫

C
f (z)dz = 2πi

n∑

k=1
Res
z=zk

f (z).
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Chapter 6: Residues and Poles

Residue at infinity

Res
z=∞ f (z) = −Res

z=0

[ 1
z2 f

(1
z

)]

Types of Isolated Singular Points: z0 isolated singular point of f
Laurent Series f (z) =

∑∞
n=0 an(z − z0)n +

∑∞
n=1

bn
(z−z0)n

Principle Part of Laurent Series:
∑∞

n=1
bn

(z−z0)n

Removable: bn = 0 for all n ∈ N
Essential: infinitely many bn 6= 0
Pole of Order m: bm 6= 0, bn = 0 for all n > m

Residues at Poles: z0 pole of order m of f
There exists a function φ which is analytic at z0 and φ(z0) 6= 0 such
that

f (z) = φ(z)
(z − z0)m .

Res
z=z0

f (z) = φ(m−1)(z0)

(m − 1)! .
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Chapter 6: Residues and Poles

Residues at Poles (cont.)
If f (z) = p(z)

q(z) , p(z0) 6= 0, q(z0) = 0, q′(z0) 6= 0, then m = 1 and

Res
z=z0

f (z) = p(z0)

q′(z0)
.

Zeros of Analytic Functions
z0 is a zero of order m of f if

f (z0) = f ′(z0) = . . . = f (m−1)(z0) = 0 but f (m)(z0) 6= 0.

There exists a function φ which is analytic at z0 and φ(z0) 6= 0 such
that

f (z) = (z − z0)
mφ(z).

Zeros of analytic functions are always isolated by the coincidence
principle, unless f is constantly zero.
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Chapter 6: Residues and Poles

Zeros and Poles: Suppose that p and q are analytic at z0, p(z0) 6= 0,
q has a zero of order m at z0. Then p(z)

q(z) has a pole of order m at z0.
Behaviour of Functions new Isolated Singular Points: z0 isolated
singular point of f

If z0 is removable, then f is bounded and analytic in Ḃε(z0) for some
ε > 0. Also: If a function f is analytic and bounded in Ḃε(z0), then
either f is analytic at z0 or z0 is removable.
If z0 is essential, then f assumes values arbitrarily close to any given
number in any deleted neighbourhood of z0 (Casorati-Weierstraß).
If z0 is a pole of order m, then

lim
z→z0

f (z) =∞.
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Chapter 7: Applications of Residues

Evaluation of Improper Integrals
If
∫∞
−∞ f (x)dx converges, then the Cauchy principle value

P.V .
∫∞
−∞ f (x)dx exists.

The inverse is in general not true! But if f is even (f (x) = f (−x)),
then the inverse holds.
Idea: Assume that f (x) = p(x)

q(x) , p and q do not share a common factor,
q has no real zero but at least one zero in the upper half plane. Let
z1, . . . , zn be the zeros of q in the upper half plane. Choose R > 0 so
big that |zj | < R for all j . Let CR be the semicircle of radius R in the
upper half plane taken in positive sense and let C be the contour
consisting of the interval [−R,R] and CR , taken in positive sense. Then

∫ R

−R
f (x)dx = 2πi

n∑

k=1
Res
z=zk

f (z)−
∫

CR

f (z)dz .

If limR→∞
∫

CR
f (z)dz = 0 and f is even, we are done.
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Chapter 7: Applications of Residues

Improper Integrals from Fourier Analysis
Want to compute integrals of the form (a > 0)

∫ ∞

−∞
f (x) cos(ax)dx and

∫ ∞

−∞
f (x) sin(ax)dx .

Caution: Same idea as on previous slide does not work. Both sin and
cos are unbounded in the upper half plane!
Solution: e iax = cos(ax) + i sin(ax). Thus,

∫ R

−R
f (x) cos(ax)dx + i

∫ R

−R
f (x) sin(ax)dx =

∫ R

−R
f (x)e iax dx .

Also for z = x + iy in the upper half plane

|e iaz | = |e iax−ay | = e−ay ≤ 1.

Hence, compute the last integral!
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Outlook

Argument Principle
Rouché’s Theorem
Conformal Mappings
Riemann Mapping Theorem
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