Review Session for MAT 342: Applied Complex Analysis

Simon Albrecht

Stony Brook, May 5, 2016
(1) Chapter 1: Complex Numbers
(2) Chapter 2: Analytic Functions
(3) Chapter 3: Elementary Functions
(4) Chapter 4: Integrals
(5) Chapter 5: Series
(6) Chapter 6: Residues and Poles
(7) Chapter 7: Applications of Residues
(8) Outlook

Chapter 1: Complex Numbers

- Definition, Sums, Products
- $z=x+i y \in \mathbb{C}, x, y \in \mathbb{R}, x=\operatorname{Re} z, y=\operatorname{Im} z, i^{2}=-1$
- $z=x+i y, w=a+i b \in \mathbb{C}$
- $z+w=(x+i y)+(a+i b)=(x+a)+i(y+b)$
- $z w=(x+i y)(a+i b)=x a-y b+i(x b+y a)$
- Algebraic Properties
- commutative, associative, distributive laws hold
- $z+0=z, z \cdot 1=z$, each $z \neq 0$ is (uniquely) invertible
- $z w=0 \Leftrightarrow(z=0$ or $w=0)$
- in other words: \mathbb{C} is a field
- Vectors, Moduli, Triangle Inequality, Complex Conjugates
- $z=x+i y \neq 0$ can be thought as being a vector from 0 to (x, y) in the plane
- $|z|:=\sqrt{(\operatorname{Re} z)^{2}+(\operatorname{lm} z)^{2}}$ (euclidean length of vector from 0 to $(\operatorname{Re} z, \operatorname{lm} z))$
- $|z+w| \leq|z|+|w|,|z+w| \geq||z|-|w||$
- $\bar{z}=\operatorname{Re} z-i \operatorname{lm} z,|z|^{2}=z \bar{z}$
- Exponential Form, Products, Powers
- For $z \neq 0: z=r e^{i \theta}, r=|z|>0, \theta \in \mathbb{R}$
- $e^{i \theta}=\cos \theta+i \sin \theta$, thus θ is only unique up to adding a multiple of 2π.
- $z=r e^{i \theta}, w=s e^{i \phi}$, then $z w=r s e^{i(\theta+\phi)}$
- $z^{n}=r^{n} e^{i n \theta}$

- Arguments, Roots of Complex Numbers

- $\arg z=\left\{\theta \in \mathbb{R}: z=|z| e^{i \theta}\right\}=\theta_{0}+2 \pi n, n \in \mathbb{Z}, \theta_{0}$ one possible argument of z
- $z=r e^{i \theta} \neq 0$, all $n^{t h}$-roots of z are $c_{k}=r^{\frac{1}{n}} \exp \left(i\left(\frac{\theta}{n}+\frac{2 \pi k}{n}\right)\right)$, where $k=0, \ldots, n-1$

Chapter 1: Complex Numbers

- Basic Topology:

- Neighbourhood, Deleted Neighbourhood
- $\varepsilon>0, \varepsilon$-neighbourhood of $z \in \mathbb{C}$ is

$$
B_{\varepsilon}(z)=\{w \in \mathbb{C}:|w-z|<\varepsilon\}
$$

- deleted ε-neighbourhood:

$$
\dot{B}_{\varepsilon}(z)=\{w \in \mathbb{C}: 0<|w-z|<\varepsilon\}=B_{\varepsilon}(z) \backslash\{z\}
$$

- $S \subset \mathbb{C}, z \in \mathbb{C}$
- z interior point of $S: \exists \varepsilon>0$ s.t. $\mathcal{B}_{\varepsilon}(z) \subset S$
- z exterior point of $S: \exists \varepsilon>0$ s.t. $\mathcal{B}_{\varepsilon}(z) \cap S=\emptyset$
- z boundary point of $S: z$ is neither interior nor exterior point of S, i.e. $\forall \varepsilon>0\left(B_{\varepsilon}(z) \cap S \neq \emptyset\right.$ and $\left.B_{\varepsilon}(z) \cap(\mathbb{C} \backslash S) \neq \emptyset\right)$, boundary of S (denoted ∂S) is the set of all boundary points of S
- Basic Topology (cont.)
- $S \subset \mathbb{C}$
- S is open if $\partial S \cap S=\emptyset$, i.e. each $z \in S$ is an interior point of S
- S is closed if $\partial S \subset S$, i.e. $\mathbb{C} \backslash S$ is open
- If S is open, S is called connected if any two points $z, w \in S$ can be joined by a polygonal line in S
- S is a domain, if S is non-empty, open, connected
- a domain together with some (or all) of its boundary points is a region
- S is bounded if $S \subset B_{R}(0)$ for some $R>0$
- Limits

$$
\begin{aligned}
& \lim _{z \rightarrow z_{0}} f(z)=w_{0} \Leftrightarrow \\
& \forall \varepsilon>0 \exists \delta>0 \forall z \in \mathbb{C}: 0<\left|z-z_{0}\right|<\delta \Rightarrow\left|f(z)-w_{0}\right|<\varepsilon
\end{aligned}
$$

- Riemann Sphere (Limits involving ∞)
- Riemann Sphere: Wrap \mathbb{C} on a sphere sitting above the origin. Add ∞ as the north pole
- $\lim _{z \rightarrow z_{0}} f(z)=\infty$, if $\lim _{z \rightarrow z_{0}} \frac{1}{f(z)}=0$
- $\lim _{z \rightarrow \infty} f(z)=w_{0}$, if $\lim _{z \rightarrow 0} f\left(\frac{1}{z}\right)=w_{0}$
- $\lim _{z \rightarrow \infty} f(z)=\infty$, if $\lim _{z \rightarrow 0} \frac{1}{f\left(\frac{1}{2}\right)}=0$
- Continuity, Derivatives
- $f: D \rightarrow \mathbb{C}$ continuous at $z_{0} \in D$ if $\lim _{z \rightarrow z_{0}} f(z)=f\left(z_{0}\right)$
- $f: D \rightarrow \mathbb{C}, z_{0} \in D$ interior point of D, f differentiable at z_{0} if

$$
f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}
$$

exists

Chapter 2: Analytic Functions

- Cauchy-Riemann Equations (both in rectangular and polar coordinates)
- $f(z)=u(x, y)+i v(x, y): u_{x}=v_{y}$ and $u_{y}=-v_{x}$
- $f\left(r e^{i \theta}\right)=u(r, \theta)+i v(r, \theta): r u_{r}=v_{\theta}$ and $u_{\theta}=-r v_{r}$
- Analytic Functions
- f is analytic in an open set S if f is differentiable at every $z \in S$.
- f is entire if f is analytic in \mathbb{C}.
- f analytic in domain $D, f^{\prime}(z)=0$ for all $z \in D$, then f is constant

- Harmonic Functions

- $u(x, y)$ harmonic in a domain $D \subset \mathbb{R}^{2}$ if

$$
u_{x x}(x, y)+u_{y y}(x, y)=0
$$

for all $(x, y) \in D$

- $f=u+i v$ analytic, then both u and v are harmonic

- Identity Theorem / Coincidence Principle

- An analytic function in a domain D is uniquely determined by its values in a subdomain or on a line segment contained in D.
- Most general version: $D \subset \mathbb{C}$ domain, $f, g: D \rightarrow \mathbb{C}$ analytic. If $\{z \in D: f(z)=g(z)\}$ has an accumulation point in D, then $f=g$.
- Reflection Principle: Let D be a domain which contains a segment of the real axis and whose lower half is the reflection of the upper half (i.e. $z \in D$ iff $\bar{z} \in D$). Let f be analytic in D. Then $\overline{f(z)}=f(\bar{z})$ for all $z \in D$ if and only if $f(x)$ is real for each point x on the segment.

Chapter 3: Elementary Functions

- The Exponential Function
- $e^{x+i y}=e^{x} e^{i y}=e^{x} \cos (y)+i e^{x} \sin (y)$
- $e^{z}=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}$
- exp is entire and $2 \pi i$-periodic
- The Logarithmic Function
- $\log z=\ln |z|+i \arg z$
- $e^{\log z}=z$
- Branches and Derivatives of Logarithms
- $\alpha \in \mathbb{R}$, restrict $\arg z$ so that $\alpha<\arg z<\alpha+2 \pi$, then

$$
\log z=\ln |z|+i \theta(|z|>0, \alpha<\theta<\alpha+2 \pi)
$$

is a branch of the logarithm and analytic in the slit plane $\left\{r e^{i \theta}: r>0, \alpha<\theta<\alpha+2 \pi\right\}$ with derivative $\frac{1}{z}$

- principle branch Log for $\alpha=-\pi$

Chapter 3: Elementary Functions

- Power Functions

- $z \neq 0, c \in \mathbb{C}: z^{c}=e^{c \log z}$
- Given a branch of \log , z^{c} becomes an analytic function in $\left\{r e^{i \theta}: r>0, \alpha<\theta<\alpha+2 \pi\right\}$ with derivative $c z^{c-1}$
- principle branch of z^{c} : choose Log
- Trigonometric Functions, Hyperbolic Functions
- $\sin z=\frac{e^{i z}-e^{-i z}}{2 i}=\sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2 n+1}}{(2 n+1)!}$
- $\cos z=\frac{e^{i z}+e^{-i z}}{2}=\sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2 n}}{(2 n)!}$
- $\sinh z=\frac{e^{z}-e^{-z}}{2}=\sum_{n=0}^{\infty} \frac{z^{2 n+1}}{(2 n+1)!}$
- $\cosh z=\frac{e^{z}+e^{-z}}{2}=\sum_{n=0}^{\infty} \frac{z^{2 n}}{(2 n)!}$
- Inverse Trigonometric and Hyperbolic Functions

Chapter 4: Integrals

Chapter 4: Integrals

- Derivatives of Functions $w:[a, b] \rightarrow \mathbb{C}, w(t)=u(t)+i v(t)$

$$
w^{\prime}(t)=u^{\prime}(t)+i v^{\prime}(t)
$$

- Definite Integrals of such Functions

$$
\int_{a}^{b} w(t) d t=\int_{a}^{b} u(t) d t+i \int_{a}^{b} v(t) d t
$$

- Contours
- arc: $\gamma:[a, b] \rightarrow \mathbb{C}$ continuous. Also $\{\gamma(t): t \in[a, b]\}$ is called arc
- simple arc (Jordan arc): γ is also injective
- simple closed curve (or Jordan curve): γ is simple except that $\gamma(a)=\gamma(b)$
- γ is positively oriented, if it is in counterclockwise direction
- if γ^{\prime} exists on $[a, b]$ and is continuous, then gamma is called differentiable arc
- if γ is differentiable and $\gamma^{\prime}(t) \neq 0$ for all t, then γ is called smooth
- A contour (or piecewise smooth arc) is an arc consisting of a finite number of smooth arcs joined end to end
- Contour Integral: $C:[a, b] \rightarrow \mathbb{C}$ contour, $f(C(t))$ piecewise continuous, then

$$
\int_{C} f(z) d z=\int_{a}^{b} f(C(t)) C^{\prime}(t) d t
$$

- Upper Bounds for Moduli of Contour Integrals
- length L of contour $C:[a, b] \rightarrow \mathbb{C}$ is $L=L(C)=\int_{a}^{b}\left|C^{\prime}(t)\right| d t$.
- C contour of length L, f piecewise continuous on C with $|f(z)| \leq M$ for all $z \in C$, then

$$
\left|\int_{C} f(z) d z\right| \leq L M
$$

- Antiderivatives: f continuous in domain D. Then
- f has antiderivative F
- Contour integrals of f along contours lying entirely in D only depend on start and end point
- contour integrals of f along closed contours lying entirely in D are all 0 are equivalent

Chapter 4: Integrals

- Cauchy-Goursat Theorem: Let C be a simple closed contour and f analytic on C and inside C. Then

$$
\int_{C} f(z) d z=0 .
$$

- Simply and Multiply Connected domains
- A domain D is simply connected if every simple closed contour lying in D only encloses points of D, i.e. " D has no holes".
- If f is analytic in a simply connected domain D, then $\int_{C} f(z) d z=0$ for every closed contour lying in D.
- A domain D is multiply connected, if it is not simply connected.
- C simple closed contour in counterclockwise direction, C_{k}, $k=1, \ldots, n$, simple closed contours lying entirely in the interior of C, all in clockwise direction, f analytic on all of these contours and in the multiply connected domain spanned by these curves, then

$$
\int_{C} f(z) d z+\sum_{k=1}^{n} \int_{C_{k}} f(z) d z=0
$$

- Cauchy Integral Formula: Let f be analytic everywhere on and inside a simple closed contour C, taken in positive sense. If z is any point interior to C, then

$$
f(z)=\frac{1}{2 \pi i} \int_{C} \frac{f(\zeta)}{\zeta-z} d \zeta
$$

- Extended Cauchy Integral Formula: C and z as above, $n \in \mathbb{N}$, then

$$
f^{(n)}(z)=\frac{n!}{2 \pi i} \int_{C} \frac{f(\zeta)}{(\zeta-z)^{n+1}} d \zeta
$$

Chapter 4: Integrals

- Consequences

- Analytic functions have derivatives of all orders.
- Morera's theorem: Let f be continuous on a domain D. If $\int_{C} f(z) d z=0$ for every closed contour C in D, then f is analytic.
- Cauchy's inequality: f analytic inside and on a positively oriented circle C_{R} of radius R centred at $z_{0}, M_{r}=\max _{\left|z-z_{0}\right|=R}|f(z)|$, then for all $n \in \mathbb{N}$

$$
\left|f^{(n)}\left(z_{0}\right)\right| \leq \frac{n!M_{R}}{R^{n}} .
$$

- Liouville's Theorem and the Fundamental Theorem of Algebra
- Liouville's theorem: A bounded entire function is constant.
- Fundamental Theorem of Algebra: Every non constant complex polynomial has at least one zero.
- Maximum Modulus Principle: If f is analytic and not constant in a given domain D, then $|f(z)|$ has no maximum value in D.

Chapter 5: Series

- Sequences, Series, Convergence
- sequence $\left(z_{n}\right)_{n \in \mathbb{N}}$ converges to z if

$$
\forall \varepsilon>0 \exists n_{\varepsilon} \in \mathbb{N} \forall n \geq n_{\varepsilon}:\left|z_{n}-z\right|<\varepsilon
$$

- series: $\sum_{n=1}^{\infty} z_{n}, S_{N}=\sum_{n=1}^{N} z_{n}$. Series converges to S if $\left(S_{N}\right)_{N \in \mathbb{N}}$ converges to S
- series $\sum_{n=1}^{\infty} z_{n}$ is absolutely convergent if $\sum_{n=1}^{\infty}\left|z_{n}\right|$ converges
- power series: $\sum_{n=0}^{\infty} z_{n}\left(z-z_{0}\right)^{n}$
- Taylor Series
- f analytic in disk $B_{R_{0}}\left(z_{0}\right)$, then

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n} \quad \text { for all } \quad z \in B_{R_{0}}\left(z_{0}\right)
$$

where

$$
a_{n}=\frac{f^{(n)}\left(z_{0}\right)}{n!}
$$

- if $z_{0}=0$, the Taylor Series is called Maclaurin Series
- Laurent Series: f analytic in $\left\{z \in \mathbb{C}: R_{1}<\left|z-z_{0}\right|<R_{2}\right\}, C$ simple closed, positively oriented contour in the annulus, then for z in that annulus

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\sum_{n=1}^{\infty} \frac{b_{n}}{\left(z-z_{0}\right)^{n}}
$$

where

$$
a_{n}=\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z \quad \text { and } \quad b_{n}=\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{\left(z-z_{0}\right)^{-n+1}} d z
$$

- Absolute and Uniform Convergence of Power Series
- There exists a largest ball in which a power series converges.
- If a power series converges at $z_{1} \neq z_{0}$, then it is absolutely convergent for every z with $\left|z-z_{0}\right|<\left|z_{1}-z_{0}\right|$.
- R radius of convergence, $R_{1}<R$, then the power series is uniformly convergent on $\left\{z \in \mathbb{C}:\left|z-z_{0}\right| \leq R_{1}\right\}$.
- Uniform convergence: The choice of n_{ε} in the convergence statement does not depend on the point z where convergence is investigated.

Chapter 5: Series

- Further Properties of Power Series $S(z)=\sum_{n_{0}}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$
- Power series represent continuous functions on their disk of convergence.
- Power series are analytic on their disk of convergence with

$$
S^{\prime}(z)=\sum_{n=1}^{\infty} n a_{n}\left(z-z_{0}\right)^{n-1} .
$$

- The integral of a power series along some contour C inside the disk of convergence is

$$
\int_{C} S(z) d z=\sum_{n=0}^{\infty} a_{n} \int_{C}\left(z-z_{0}\right)^{n} d z
$$

- Power series representations are unique.

Chapter 6: Residues and Poles

- Isolated Singular Points: A singular point z_{0} of an analytic function f is isolated if there exists some $\varepsilon>0$ such that there is no other singular point in $\dot{B}_{\varepsilon}\left(z_{0}\right)$.
- Residues: z_{0} isolated singular point of an analytic function f,

$$
f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\sum_{n=1}^{\infty} \frac{b_{n}}{\left(z-z_{0}\right)^{n}}
$$

Laurent Series of f in $\dot{B}_{\varepsilon}\left(z_{0}\right)$. The coefficient b_{1} is called residue of f at z_{0}

$$
\operatorname{Res}_{z=z_{0}}^{\operatorname{Re}} f(z)=b_{1}=\frac{1}{2 \pi i} \int_{C} f(z) d z .
$$

- Cauchy's Residue Theorem: Let C be a simple closed contour, described in positive sense. If f is analytic inside and on C except for a finite number of singular points $z_{k}(k=1, \ldots, n)$ inside C, then

$$
\int_{C} f(z) d z=2 \pi i \sum_{k=1}^{n} \operatorname{Res}_{z=z_{k}} f(z)
$$

- Residue at infinity

$$
\operatorname{Res}_{z=\infty} f(z)=-\operatorname{Res}_{z=0}\left[\frac{1}{z^{2}} f\left(\frac{1}{z}\right)\right]
$$

- Types of Isolated Singular Points: z_{0} isolated singular point of f
- Laurent Series $f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}+\sum_{n=1}^{\infty} \frac{b_{n}}{\left(z-z_{0}\right)^{n}}$
- Principle Part of Laurent Series: $\sum_{n=1}^{\infty} \frac{b_{n}}{\left(z-z_{0}\right)^{n}}$
- Removable: $b_{n}=0$ for all $n \in \mathbb{N}$
- Essential: infinitely many $b_{n} \neq 0$
- Pole of Order $m: b_{m} \neq 0, b_{n}=0$ for all $n>m$
- Residues at Poles: z_{0} pole of order m of f
- There exists a function ϕ which is analytic at z_{0} and $\phi\left(z_{0}\right) \neq 0$ such that

$$
\begin{gathered}
f(z)=\frac{\phi(z)}{\left(z-z_{0}\right)^{m}} . \\
\operatorname{Res}_{z=z_{0}} f(z)=\frac{\phi^{(m-1)}\left(z_{0}\right)}{(m-1)!} .
\end{gathered}
$$

-
- Residues at Poles (cont.)
- If $f(z)=\frac{p(z)}{q(z)}, p\left(z_{0}\right) \neq 0, q\left(z_{0}\right)=0, q^{\prime}\left(z_{0}\right) \neq 0$, then $m=1$ and

$$
\operatorname{Res}_{z=z_{0}} f(z)=\frac{p\left(z_{0}\right)}{q^{\prime}\left(z_{0}\right)}
$$

- Zeros of Analytic Functions

- z_{0} is a zero of order m of f if

$$
f\left(z_{0}\right)=f^{\prime}\left(z_{0}\right)=\ldots=f^{(m-1)}\left(z_{0}\right)=0 \quad \text { but } \quad f^{(m)}\left(z_{0}\right) \neq 0 .
$$

- There exists a function ϕ which is analytic at z_{0} and $\phi\left(z_{0}\right) \neq 0$ such that

$$
f(z)=\left(z-z_{0}\right)^{m} \phi(z) .
$$

- Zeros of analytic functions are always isolated by the coincidence principle, unless f is constantly zero.
- Zeros and Poles: Suppose that p and q are analytic at $z_{0}, p\left(z_{0}\right) \neq 0$, q has a zero of order m at z_{0}. Then $\frac{p(z)}{q(z)}$ has a pole of order m at z_{0}.
- Behaviour of Functions new Isolated Singular Points: z_{0} isolated singular point of f
- If z_{0} is removable, then f is bounded and analytic in $\dot{B}_{\varepsilon}\left(z_{0}\right)$ for some $\varepsilon>0$. Also: If a function f is analytic and bounded in $\dot{B}_{\varepsilon}\left(z_{0}\right)$, then either f is analytic at z_{0} or z_{0} is removable.
- If z_{0} is essential, then f assumes values arbitrarily close to any given number in any deleted neighbourhood of z_{0} (Casorati-Weierstraß).
- If z_{0} is a pole of order m, then

$$
\lim _{z \rightarrow z_{0}} f(z)=\infty .
$$

- Evaluation of Improper Integrals

- If $\int_{-\infty}^{\infty} f(x) d x$ converges, then the Cauchy principle value P.V. $\int_{-\infty}^{\infty} f(x) d x$ exists.
- The inverse is in general not true! But if f is even $(f(x)=f(-x))$, then the inverse holds.
- Idea: Assume that $f(x)=\frac{p(x)}{q(x)}, p$ and q do not share a common factor, q has no real zero but at least one zero in the upper half plane. Let z_{1}, \ldots, z_{n} be the zeros of q in the upper half plane. Choose $R>0$ so big that $\left|z_{j}\right|<R$ for all j. Let C_{R} be the semicircle of radius R in the upper half plane taken in positive sense and let C be the contour consisting of the interval $[-R, R]$ and C_{R}, taken in positive sense. Then

$$
\int_{-R}^{R} f(x) d x=2 \pi i \sum_{k=1}^{n} \operatorname{Res}_{z=z_{k}} f(z)-\int_{C_{R}} f(z) d z
$$

- If $\lim _{R \rightarrow \infty} \int_{C_{R}} f(z) d z=0$ and f is even, we are done.

Chapter 7: Applications of Residues

- Improper Integrals from Fourier Analysis

- Want to compute integrals of the form ($a>0$)

$$
\int_{-\infty}^{\infty} f(x) \cos (a x) d x \quad \text { and } \quad \int_{-\infty}^{\infty} f(x) \sin (a x) d x
$$

- Caution: Same idea as on previous slide does not work. Both sin and cos are unbounded in the upper half plane!
- Solution: $e^{i a x}=\cos (a x)+i \sin (a x)$. Thus,

$$
\int_{-R}^{R} f(x) \cos (a x) d x+i \int_{-R}^{R} f(x) \sin (a x) d x=\int_{-R}^{R} f(x) e^{i a x} d x .
$$

Also for $z=x+i y$ in the upper half plane

$$
\left|e^{i a z}\right|=\left|e^{i a x-a y}\right|=e^{-a y} \leq 1
$$

Hence, compute the last integral!

Outlook

- Argument Principle
- Rouché's Theorem
- Conformal Mappings
- Riemann Mapping Theorem

