Name:

MAT342 Solutions to Quiz 4

Wednesday, May 1

1. Calculate $\int_{\mathcal{C}} \frac{2z-3}{z^2(2z^2+9)} dz$ where \mathcal{C} is the positively oriented circle $\{z : |z| = 2\}$. For full credit, you must fully justify your answer.

The function $\frac{2z-3}{z^2(2z^2+9)}$ is singular at z=0 and $z=\pm 3i/\sqrt{2}$; only z=0 lies inside the contour C, and f(z) has a pole of order 2 at z=0.

Let $\phi(z) = (2z-3)/(2z^2+9)$. Then we can calculate the residue at 0 as

$$\operatorname{Res}_{z=0} f(z) = \phi'(0) = \frac{2(2z^2+9) - (2z-3)(4z)}{(2z^2+9)^2} \bigg|_{z=0} = \frac{2}{9}$$

Thus, the value of the integral is $2\pi i \operatorname{Res}_{z=0} f(z) = \frac{4\pi i}{9}$.

2. Calculate $\int_0^\infty \frac{x \sin 2x}{x^2 + 3} dx$. For full credit, you must justify all steps in your answer.

Let C_R be the positively oriented semi-circle |z| = R with $\text{Im } z \ge 0$, let L_R be the segment of the real axis from -R to R, and let C be the contour C_R followed by L_R .

When $R > \sqrt{3}$, we have

$$\int_{\mathcal{C}} \frac{z e^{2iz}}{z^2 + 3} \, dz = 2\pi i \operatorname{Res}_{z=i\sqrt{3}} \frac{z e^{2iz}}{z^2 + 3} = 2\pi i \frac{i\sqrt{3}e^{-2\sqrt{3}}}{2i\sqrt{3}} = i\pi e^{-2\sqrt{3}} \, .$$

Note also that for any $R > \sqrt{3}$

$$\operatorname{Im}\left(\int_{\mathcal{C}} \frac{ze^{2iz}}{z^2+3} \, dz\right) = \operatorname{Im}\left(\int_{\mathcal{C}_R} \frac{ze^{2iz}}{z^2+3} \, dz + \int_{-R}^{R} \frac{xe^{2ix}}{x^2+3} \, dx\right)$$

and $\lim_{R\to\infty} \int_{\mathcal{C}_R} \frac{ze^{2tz}}{z^2+3} dz = 0$ since $\left|\frac{z}{z^2+3}\right| \leq \frac{R}{R^2-3}$ for |z| = R. By Jordan's lemma, this implies that the integral over \mathcal{C}_R goes to 0 as $R \to \infty$.

Combining the two equations and taking the limit as $R \rightarrow \infty$, we obtain

$$\pi e^{-2\sqrt{3}} = \int_{-\infty}^{\infty} \frac{x \sin 2x}{x^2 + 3} \, dx \; .$$

Finally, since the integrand is an even function

$$\int_0^\infty \frac{x \sin 2x}{x^2 + 3} \, dx = \frac{\pi}{2 \, e^{2\sqrt{3}}} \, .$$