MAT342 Solutions to Quiz 4

Wednesday, May 1

1. Calculate $\quad \int_{\mathcal{C}} \frac{2 z-3}{z^{2}\left(2 z^{2}+9\right)} d z$ where \mathcal{C} is the positively oriented circle $\{z:|z|=2\}$.

For full credit, you must fully justify your answer.
The function $\frac{2 z-3}{z^{2}\left(2 z^{2}+9\right)}$ is singular at $z=0$ and $z= \pm 3 i / \sqrt{2}$; only $z=0$ lies inside the contour \mathcal{C}, and $f(z)$ has a pole of order 2 at $z=0$.

Let $\phi(z)=(2 z-3) /\left(2 z^{2}+9\right)$. Then we can calculate the residue at 0 as

$$
\operatorname{Res}_{z=0} f(z)=\phi^{\prime}(0)=\left.\frac{2\left(2 z^{2}+9\right)-(2 z-3)(4 z)}{\left(2 z^{2}+9\right)^{2}}\right|_{z=0}=\frac{2}{9} .
$$

Thus, the value of the integral is $2 \pi i \underset{z=0}{\operatorname{Res}} f(z)=\frac{4 \pi i}{9}$.
2. Calculate $\int_{0}^{\infty} \frac{x \sin 2 x}{x^{2}+3} d x$. For full credit, you must justify all steps in your answer.

Let \mathcal{C}_{R} be the positively oriented semi-circle $|z|=R$ with $\operatorname{Im} z \geq 0$, let L_{R} be the segment of the real axis from $-R$ to R, and let \mathcal{C} be the contour \mathcal{C}_{R} followed by L_{R}.

When $R>\sqrt{3}$, we have

$$
\int_{\mathcal{C}} \frac{z e^{2 i z}}{z^{2}+3} d z=2 \pi i \operatorname{Res}_{z=i \sqrt{3}} \frac{z e^{2 i z}}{z^{2}+3}=2 \pi i \frac{i \sqrt{3} e^{-2 \sqrt{3}}}{2 i \sqrt{3}}=i \pi e^{-2 \sqrt{3}} .
$$

Note also that for any $R>\sqrt{3}$

$$
\operatorname{Im}\left(\int_{\mathcal{C}} \frac{z e^{2 i z}}{z^{2}+3} d z\right)=\operatorname{Im}\left(\int_{\mathcal{C}_{R}} \frac{z e^{2 i z}}{z^{2}+3} d z+\int_{-R}^{R} \frac{x e^{2 i x}}{x^{2}+3} d x\right)
$$

and $\lim _{R \rightarrow \infty} \int_{\mathcal{C}_{R}} \frac{z e^{2 i z}}{z^{2}+3} d z=0$ since $\left|\frac{z}{z^{2}+3}\right| \leq \frac{R}{R^{2}-3}$ for $|z|=R$. By Jordan's lemma, this implies that the integral over \mathcal{C}_{R} goes to 0 as $R \rightarrow \infty$.

Combining the two equations and taking the limit as $R \rightarrow \infty$, we obtain

$$
\pi e^{-2 \sqrt{3}}=\int_{-\infty}^{\infty} \frac{x \sin 2 x}{x^{2}+3} d x
$$

Finally, since the integrand is an even function

$$
\int_{0}^{\infty} \frac{x \sin 2 x}{x^{2}+3} d x=\frac{\pi}{2 e^{2 \sqrt{3}}} .
$$

