MAT342 Solutions to Quiz 3

Wednesday, April 10

1. Let $\quad f(z)=\frac{\left(z^{2}-2 z\right) \sin z-z^{2}-6 z-8}{z^{3}-4 z}=\frac{2}{z}+\frac{\sin z}{z+2}-\frac{3}{z-2}$
and let \mathcal{C} be the positively oriented circle $\{z:|z-1|=2\}$. Calculate $\int_{\mathcal{C}} f(z) d z$.
The function $f(z)$ has singularities for $z \in\{-2,0,2\}$, and the contour \mathcal{C} surrounds $z=0$ and $z=2$. Using the Cauchy-Goursat theorem, we can decompose the integral as

$$
\int_{\mathcal{C}} f(z) d z=\int_{\mathcal{C}_{0}} \frac{2 d z}{z}-\int_{\mathcal{C}_{2}} \frac{3 d z}{z-2}=4 \pi i-6 \pi i=-2 \pi i
$$

where \mathcal{C}_{0} is a small, positively oriented circle around 0 and \mathcal{C}_{2} is a small, positively oriented circle around 2. Evaluating the integrals can be done by applying the Cauchy integral formula.
2. Write the Laurent series for $g(z)=z^{2} \cos (1 / z)$. For what $z \in \mathbb{C}$ does this series converge to an analytic function?
To do this, use the Maclaurin series for $\cos (w)$ with $w=1 / z$ and multiply each term by z^{2}. That is,

$$
\begin{aligned}
z^{2} \cos (1 / z) & =z^{2} \sum_{n=0}^{\infty}(-1)^{n} \frac{(1 / z)^{2 n}}{(2 n)!} & & =z^{2}\left(1-\frac{1}{2 z^{2}}+\frac{1}{4!z^{4}}-\frac{1}{6!z^{6}}+\ldots\right) \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!z^{2 n-2}} & & =z^{2}-\frac{1}{2}+\frac{1}{4!z^{2}}-\frac{1}{6!z^{4}}+\ldots
\end{aligned}
$$

Since $\cos (w)$ is entire, its Maclaurin series converges for all $w \in \mathbb{C}$. Consequently, $z^{2} \cos (1 / z)$ is analytic except for $z=0$, and its Laurent series converges for all $z \neq 0$.

