MAT342 Quiz 1

Solutions

1. Find all solutions to $z^{4}=-16$. Fully justify your answer.

Write $z=r e^{i \theta}$. We want to find all r and θ satisfying $\left(r e^{i \theta}\right)^{4}=-16$.
Observe that $-1=e^{i \pi}$ and that $16=2^{4}$. Hence $r=2$ and $4 \theta=\pi+2 \pi k$ for some $k \in \mathbb{Z}$.
There are 4 solutions for θ, namely $\theta=\pi / 4, \theta=3 \pi / 4, \theta=5 \pi / 4$ and $\theta=7 \pi / 4$ (you could use $\theta=-\pi / 4$ and $\theta=-3 \pi / 4$ if you prefer).

This means the four solutions of $z^{4}=-16$ are

$$
\begin{array}{ll}
2 e^{3 i \pi / 4}=-\sqrt{2}+i \sqrt{2}, & 2 e^{i \pi / 4}=\sqrt{2}+i \sqrt{2} \\
2 e^{5 i \pi / 4}=-\sqrt{2}-i \sqrt{2}, & 2 e^{7 i \pi / 4}=\sqrt{2}-i \sqrt{2}
\end{array}
$$

Here's another way. Since $z^{4}=-16$, we know $z^{2}= \pm \sqrt{-16}= \pm 4 i$. So take the square root of each of those. Of course, we have to figure out that $\sqrt{i}= \pm \frac{1+i}{\sqrt{2}}$ and that $\sqrt{-i}= \pm i \cdot \frac{1+i}{\sqrt{2}}= \pm \frac{-1+i}{\sqrt{2}}$ and then multiply each answer by $\sqrt{4}=2$. Those four results simplify to the four solutions above.

You might try other things. For example, you could (but why?) write $z=x+i y$, so $z^{4}=(x+i y)^{4}=x^{4}-6 x^{2} y^{2}+y^{4}-4\left(x^{3} y+x y^{3}\right) i$. Now solve the simultaneous equations $x^{4}-6 x^{2} y^{2}+y^{4}=-16, x^{3} y+x y^{3}=0$. But this is a bad idea, since it leads you back to apparently needing to solve $y^{4}=-16$, and you just get sad. Don't do this. (If you insist, after a ton of horrible calculation, you can discover that $x= \pm \sqrt{2}, y= \pm \sqrt{2}$ works, which yeilds the answer above.)

Or you could use de Moivre. Even this is too much work for me, so I won't. Guess I'm just lazy.
2. Consider the function $J(z)=\frac{1}{2}\left(z+\frac{1}{z}\right)$, and let S be the unit circle $\{z \in \mathbb{C}:|z|=1\}$.

Describe the image of S under J and justify your answer. (That is, describe the set $\{w \in \mathbb{C}: w=J(z)$ for $z \in S\}$. Writing z in exponential notation might help.
Any point $z \in S$ can be written as $e^{i \theta}$ for some θ. In this case, $1 / z=1 / e^{i \theta}=e^{-i \theta}=\bar{z}$. Hence for $z \in S$,

$$
J(z)=\frac{1}{2}(z+\bar{z})=\frac{1}{2}(2 \operatorname{Re}(z))=\operatorname{Re}(z)
$$

This means the image of the unit circle under J is just the projection of the unit circle onto the real axis, that is, the interval $[-1,1] \subset \mathbb{R} \subset \mathbb{C}$, or if you prefer, the set $\{x+i y: y=0,|x| \leq 1\}$.

A lot of people figured out that $J\left(r e^{i \theta}\right)=\cos \theta$ and then drew the graph of $\cos \theta$ as a function of θ (that is, a wiggly curve). But this is not the image in \mathbb{C}, it is the graph of a function from \mathbb{R} to \mathbb{R}. Rather, the image is all the possible values of $\cos \theta$ as $0 \leq \theta \leq 2 \pi$ (or $\theta \in \mathbb{R}$), that is, the real numbers between -1 and 1 inclusive. This is a line segment, not a wiggly curve.

