MAT 342
 Solutions to Midterm

10 pts 1. Simplify each of the following, writing your answer in the form $a+i b$ where a and b are real numbers (or sets of real numbers). Justify your answers fully.
(a) $\frac{1-i}{1+\sqrt{3} i}$

Solution:

$$
\frac{1-i}{1+\sqrt{3} i}=\frac{(1-i)(1-\sqrt{3} i)}{(1+\sqrt{3} i)(1-\sqrt{3} i)}=\frac{1-\sqrt{3}}{4}-i \frac{1+\sqrt{3}}{4}
$$

(b) $\left(\frac{1-i}{\sqrt{2}}\right)^{i}$

Solution:

$$
\begin{aligned}
&\left(\frac{1-i}{\sqrt{2}}\right)^{i}=e^{i \log ([1-i] / \sqrt{2})}=\exp \left(i\left(\ln 1-i \frac{\pi}{4}+2 k \pi i\right)\right)=e^{\pi / 4} e^{-2 k \pi}, \quad k \in \mathbb{Z} ; \\
& \text { that is, },\left\{\ldots, e^{-23 \pi / 4}, e^{-15 \pi / 4}, e^{-7 \pi / 4}, e^{\pi / 4}, e^{9 \pi / 4}, e^{17 \pi / 4}, e^{25 \pi / 4}, \ldots\right\} .
\end{aligned}
$$

10 pts 2. For each of the functions below, state all values of z for which the function is analytic. (If there are none, say so). Justify your answer fully.
(a) $f(z)=\frac{\bar{z}}{|z|^{2}}$

Solution: Since $|z|^{2}=z \cdot \bar{z}$, we have $f(z)=\frac{1}{z}$ which is analytic on $\mathbb{C} \backslash\{0\}$.
Of course, you can also do this by writing $f(x+i y)=\frac{x-i y}{x^{2}+y^{2}}=u(x, y)+i v(x, y)$, and then checking that the partials are continuous for $z \neq 0$ and the Cauchy-Riemann equations are satisfied. That is actual work, but let's do it anyway.

$$
\begin{array}{ll}
u_{x}=\frac{\left(x^{2}+y^{2}\right)-2 x^{2}}{\left(x^{2}+y^{2}\right)^{2}}=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}} & u_{y}=\frac{-2 x y}{\left(x^{2}+y^{2}\right)^{2}} \\
v_{x}=\frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}} & v_{y}=-\frac{\left(x^{2}+y^{2}\right)-2 y^{2}}{\left(x^{2}+y^{2}\right)^{2}}=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}
\end{array}
$$

Since we have $u_{x}=v_{y}$ and $u_{y}=-v_{x}$ and the partials are continuous for $z \neq 0$, the function is analytic for $z \neq 0$.
(b) $g(z)=\bar{z}^{2}$

Solution: Write $\bar{z}^{2}=(x-i y)^{2}=\left(x^{2}-y^{2}\right)-2 x y i=u+i v$. Then we have

$$
u_{x}=2 x, \quad u_{y}=-2 x \quad v_{x}=-2 y=u_{y}
$$

and the Cauchy-Riemann equations can only be satisfied when $x=-x$ and $y=-y$; hence, the only solution is $z=0$. Thus $g^{\prime}(0)=0$ and $g^{\prime}(z)$ does not exist for $z \neq 0$. For g to be analytic, it must exist in an entire neighborhood, so g is nowhere analytic.

10 pts 3. Let $\gamma(t)=t+\left(1-t^{2}\right) i$, with $0 \leq t \leq 1$. Calculate the integral

$$
\int_{\gamma} z^{2}+\frac{1}{z} d z
$$

Solution: Observe that in the upper half-plane, the function $f(z)$ has an analytic antiderivative $z^{3} / 3+\log z$ (you can choose any branch of the logarithm $\alpha<\arg z<2 \pi+\alpha$ as long as $e^{i \alpha}$ is not in the first quadrant). In particular, the principal branch works. So:
$\int_{\gamma} z^{2}+\frac{1}{z} d z=\frac{z^{3}}{3}+\left.\log z\right|_{i} ^{1}=\left(\frac{1}{3}+\log 1\right)-\left(\frac{i^{3}}{3}+\log i\right)=\frac{1}{3}+\frac{i}{3}-\frac{\pi i}{2}=\frac{2+(2-3 \pi) i}{6}$.
If you insist on evaluating along the contour directly, that's OK too. Have fun.
Well, OK, I'll do it here but I don't want to.

$$
\begin{aligned}
\int_{\gamma} z^{2}+\frac{1}{z} d z & =\int_{0}^{1} f(\gamma(t)) \gamma^{\prime}(t) d t \\
& =\int_{0}^{1}\left(\left(t+i\left(1-t^{2}\right)\right)^{2}-\frac{1}{t+i\left(1-t^{2}\right)}\right)(1-2 i t) d t \\
& \text { some ugly algebraic calculation omitted here } \\
& =\int_{0}^{1} 2 i t^{5}-5 t^{4}-8 i t^{3}+7 t^{2}+4 i t-1+\frac{1-2 i t}{-i t^{2}+t+i} \\
& =\frac{i t^{6}}{3}-t^{5}-2 i t^{4}+\frac{7}{3} t^{3}+2 i t^{2}-t+\left.\log \left(-i t^{2}+t+i\right)\right|_{0} ^{1} \\
& =\left(\frac{i}{3}-1-2 i+\frac{7}{3}+2 i-1+\log 1\right)-\log i \\
& =\left(\frac{1}{3}+\frac{i}{3}\right)-\frac{\pi i}{2}=\frac{1}{3}+\frac{i}{3}-\frac{\pi i}{2}
\end{aligned}
$$

That was significantly less fun, but not as bad as I expected. I only had to correct my work like 6 times. Not my recommended method.

10 pts 4. Consider the domain \mathcal{D} consisting of the complex plane with the positive imaginary axis removed (0 is also not included in \mathcal{D}).
Let f be the multivalued function $z \mapsto z^{1 / 4}$. Explicitly describe the branch of f for which $f(1)=-i$, and calculate $f(-1)$.

Solution: The function $z \mapsto z^{1 / 4}$ is a 4 -valued function: there are four solutions to $w^{4}=1$, namely $w \in\{1, i,-1,-i\}$. Recall that branches of $z^{1 / 4}$ can all be written as $r e^{i \theta} \mapsto \sqrt[4]{r} e^{i \theta / 4}$, with $r>0$ and $\alpha<\theta<\alpha+2 \pi$ for an appropriate choice of α.

Since we need a branch f_{4} that takes 1 to $-i=e^{-i \pi / 2}$, we must ensure that $1=e^{-2 \pi i}$. The domain \mathcal{D} for f is slit along the positive imaginary axis (z with $\arg z=\pi / 2+2 k \pi$), and so we choose $k=-1$. That is, we want $\alpha=-2 \pi-\pi / 2=-5 \pi / 2$. Hence the desired branch is

$$
f_{4}\left(r e^{i \theta}\right)=\sqrt[4]{r} e^{i \theta / 4} \quad \text { with } r>0 \text { and }-7 \pi / 2<\theta<-3 \pi / 2 .
$$

Then for this branch we have

$$
f_{4}(-1)=f_{4}\left(e^{-3 \pi i}\right)=e^{-3 \pi i / 4}=\frac{-1-i}{\sqrt{2}}
$$

Various other choices of k (for example, $k=3, k=7$) will give equivalent answers; others ($k=0, k=1$, $k=2, k=5$, etc.) will not.
Let's look at this again. Shown below on the left are a series of quarter-circles (red, green, blue, and orange), and four purple radial lines. The fourth roots of 1 are marked with black disks, and the fourth roots of -1 are marked with red boxes. On the right is the image of the left-hand picture under $w \mapsto w^{4}$.

To get $z \mapsto z^{1 / 4}$, we need to go from right to left. But we need to choose a branch so the function is well-defined. The blue one is the one specified in the problem. Taking $k=0$ gives the orange branch, $k=1$ gives the red, and $k=2$ gives the green. Then the pattern repeats. The most general solution could be written as
$f_{4}\left(r e^{i \theta}\right)=\sqrt[4]{r} e^{i \theta / 4} \quad$ with $r>0$ and $2(4 n-1) \pi-\pi / 2<\theta<2(4 n-1) \pi+3 \pi / 2, \quad n \in \mathbb{Z}$

10 pts 5. Let $E=\{z \in \mathbb{C} \mid \operatorname{Im} z>0$ and $\operatorname{Re} z \geq 0\}$ and describe the set $f(E)$ where $f(z)=-z^{3}$. As part of your answer, include a sketch of $f(E)$, using solid lines to indicate boundaries which are included and dashed lines to indicate boundaries not included. Shade the interior of $f(E)$ (if there is one).

Solution: First, observe that $f(0)=0$, which although $0 \notin E$, it will be helpful to keep track of since 0 is on the boundary of E. If we think of E in polar form, things become a bit more apparent.
For $z \neq 0$, we can write $z=r e^{i \theta}$, and then we have

$$
f\left(r e^{i \theta}\right)=-r e^{3 \theta i}=e^{i \pi} \cdot r e^{3 \theta i}=r e^{(3 \theta+\pi) i}
$$

The set E can be described as the points $z \in \mathbb{C}$ with $0<\arg z \leq \pi / 2$. Then the image $f(E)$ will consist of those z with $\operatorname{Im} z<0$ or $\operatorname{Re} z \geq 0$ (but $z \neq 0$). Alternatively, you can describe it as $z \neq 0$ and $-\pi<\arg z \leq \pi / 2$.
Thinking of f as the composition of $z \mapsto z^{3}$ followed by multiplication by -1 , we have the picture below (E and its images are shown in green, with a blue boundary).

That is, first we triple the argument and cube the modulus $\left(z \mapsto z^{3}\right)$, and then multiplying by -1 rotates the plane by a half-turn (which is the same as adding π to the argument, if you prefer to think of it that way.)

Note that while you can write $f(z)$ as $f(x+i y)=-x^{3}+3 x y^{2}+i\left(-3 x^{2} y+y^{3}\right)$, it isn't terribly helpful to do so (at least not for me, nor was it for most people who tried to do the problem this way.)

