Name:
ID:

MAT 342 Applied Complex Analysis

 Final Exam Example

 Final Exam Example
 May 2016

1. (12 pts, 4 pts each)
a) Define the notion complex differentiable.
b) Define the principle branch of the logarithm.
c) State Cauchy's residue theorem.

Name:

\qquad ID:
2. (12 pts, 4 pts each)
a) Find the multiplicative inverse of $3+4 i$ and write the solution in rectangular form.
b) Find all $z \in \mathbb{C}$ such that $z^{2}=4 i$.
c) Prove the triangle inequality: For all $z, w \in \mathbb{C}$, the inequality

$$
|z+w| \leq|z|+|w|
$$

holds.

Name:

ID:
3. (10 pts) Find all $z \in \mathbb{C}$ such that

$$
z^{4}+z^{3}+z^{2}+z+1=0 .
$$

Name:

ID:
4. (12 pts) Let f be an entire function such that

$$
f(z)=f(z+1)=f(z+i)
$$

for all $z \in \mathbb{C}$. Prove that f is constant.

Name:

\qquad ID:
5. (10 pts) Let p be a polynomial of degree d_{p} and let q be a polynomial of degree d_{q} with $\max \left\{d_{p}, d_{q}\right\} \geq 1$. Assume that q is not constantly 0 and that p and q do not share a common zero. Let $f: \mathbb{C} \backslash\{z \in \mathbb{C} \mid q(z)=0\} \rightarrow \mathbb{C}$ be given by

$$
f(z)=\frac{p(z)}{q(z)}
$$

Let $z_{0} \in \mathbb{C}$. Prove that there exists some $z \in \mathbb{C}$ such that $f(z)=z_{0}$.

Name:

ID:
6. (12 pts) Find the Laurent series of

$$
f(z)=\frac{1}{(z-1)(z-3)}
$$

in $\{z \in \mathbb{C}|0<|z-1|<2\}$.

Name:

\qquad ID:
7. (12 pts, 4 pts each) Let

$$
f(z)=\frac{1}{(z-2)(z-4)} .
$$

Find the contour integrals of f along the circles about the origin of radius 1,3 and 5 , taken in counterclockwise direction.

Name:

ID:
8. (20 pts, 10 pts each) Compute both
a)

$$
\int_{0}^{\infty} \frac{1}{1+x^{4}} d x \quad \text { and }
$$

b)

$$
\int_{-\infty}^{\infty} \frac{x \sin (a x)}{x^{4}+4} d x \quad \text { where } a>0
$$

using residues.

