MAT 342 Applied Complex Analysis
 Final Exam Example

May 2016

1. (12 pts, 4 pts each)
a) Define the notion complex differentiable.

Let $S \subset \mathbb{C}$ be an open set and let $f: S \rightarrow \mathbb{C}$ be a function. Let $z_{0} \in S$. The function f is called (complex) differentiable at z_{0} if the limit

$$
\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}
$$

exists.
b) Define the principle branch of the logarithm.

The principle branch of the logarithm is defined by

$$
\log (z)=\ln (|z|)+i \operatorname{Arg}(z)
$$

where $z \in \mathbb{C} \backslash\{r \in \mathbb{R} \mid r \leq 0\}$ and $-\pi<\operatorname{Arg}(z)<\pi$.
c) State Cauchy's residue theorem.

Let C be a simple closed, positively oriented contour, and let f be a function which is analytic on C and inside C with the possible exception of finitely many points $z_{k}(k=1, \ldots, n)$ inside C. Then

$$
\int_{C} f(z) d z=2 \pi i \sum_{k=1}^{n} \operatorname{Res}_{z=z_{0}} f(z) .
$$

Continue on page 2

Name: \qquad ID: \qquad
2. (12 pts, 4 pts each)
a) Find the multiplicative inverse of $3+4 i$ and write the solution in rectangular form.
b) Find all $z \in \mathbb{C}$ such that $z^{2}=4 i$.
c) Prove the triangle inequality: For all $z, w \in \mathbb{C}$, the inequality

$$
|z+w| \leq|z|+|w|
$$

holds.
a)

$$
(3+4 i)^{-1}=\frac{1}{3+4 i}=\frac{3-4 i}{9+16}=\frac{3}{25}-i \frac{4}{25} .
$$

b) We have $4 i=4 e^{i \frac{\pi}{2}}$. Thus, the two complex roots are

$$
\sqrt{4} e^{i \frac{\pi}{4}}=2 e^{i \frac{\pi}{4}}=2 \frac{1}{\sqrt{2}}+i 2 \frac{1}{\sqrt{2}}=\sqrt{2}+i \sqrt{2}
$$

and

$$
\sqrt{4} e^{i\left(\frac{\pi}{4}+\pi\right)}=-2 e^{i \frac{\pi}{4}}=-\sqrt{2}-i \sqrt{2} .
$$

c) Let $z, w \in \mathbb{C}$. Since $|z|^{2}=z \bar{z}$, we get

$$
\begin{aligned}
|z+w|^{2} & =(z+w)(\overline{z+w})=(z+w)(\bar{z}+\bar{w})=z \bar{z}+z \bar{w}+w \bar{z}+w \bar{w} \\
& =|z|^{2}+z \bar{w}+\overline{z \bar{w}}+|w|^{2}=|z|^{2}+2 \operatorname{Re}(z \bar{w})+|w|^{2} \\
& \leq|z|^{2}+2|z||w|+|w|^{2}=(|z|+|w|)^{2} .
\end{aligned}
$$

Thus,

$$
|z+w| \leq|z|+|w| .
$$

Continue on page 3

Name:

\qquad ID:
3. (10 pts) Find all $z \in \mathbb{C}$ such that

$$
z^{4}+z^{3}+z^{2}+z+1=0 .
$$

Proof. We have for $z \neq 1$

$$
z^{4}+z^{3}+z^{2}+z+1=\frac{z^{5}-1}{z-1}
$$

(partial sum of the geometric series). Thus,

$$
z^{4}+z^{3}+z^{2}+z+1=0 \Leftrightarrow\left(z^{5}=1 \text { and } z \neq 1\right) .
$$

Hence, all solutions of the equation are the non-trivial $5^{t h}$ roots of unity, i.e.

$$
e^{i \frac{2 \pi}{5}}, e^{i \frac{4 \pi}{5}}, e^{i \frac{6 \pi}{5}}, e^{i \frac{8 \pi}{5}} .
$$

Name: \qquad ID:
4. (12 pts) Let f be an entire function such that

$$
f(z)=f(z+1)=f(z+i)
$$

for all $z \in \mathbb{C}$. Prove that f is constant.
Proof. Let $Q=\{z \in \mathbb{C} \mid 0 \leq \operatorname{Re} z, \operatorname{Im} z \leq 1\}$. Then for any $w \in \mathbb{C}$ there exists some $z \in Q$ such that $f(z)=f(w)$ (write $w=a+i b=(n+s)+i(m+r)$ for some $n, m \in \mathbb{Z}$ and $0 \leq s, r<1$). Since Q is bounded and closed (i.e. compact) and f is continuous on Q, f is bounded on Q. Due to the argument above, f is bounded on all of \mathbb{C}. Thus, f is a bounded entire function which must be constant by Liouville's theorem.

Name: \qquad ID: \qquad
5. (10 pts) Let p be a polynomial of degree d_{p} and let q be a polynomial of degree d_{q} with $\max \left\{d_{p}, d_{q}\right\} \geq 1$. Assume that q is not constantly 0 and that p and q do not share a common zero. Let $f: \mathbb{C} \backslash\{z \in \mathbb{C} \mid q(z)=0\} \rightarrow \mathbb{C}$ be given by

$$
f(z)=\frac{p(z)}{q(z)}
$$

Let $z_{0} \in \mathbb{C}$. Prove that there exists some $z \in \mathbb{C}$ such that $f(z)=z_{0}$.
Proof. We have

$$
f(z)=z_{0} \Leftrightarrow \frac{p(z)}{q(z)}=z_{0} \Leftrightarrow p(z)=z_{0} q(z) \Leftrightarrow p(z)-z_{0} q(z)=0 .
$$

Since p and q do not share a common zero, the zeros of q can't be solutions. But $p-z_{0} q$ is a polynomial of degree $\max \left\{d_{p}, d_{q}\right\} \geq 1$. Hence, it has at least one zero $z \in \mathbb{C}$ by the Fundamental Theorem of Algebra. For this zero, $f(z)=z_{0}$ holds.

Name: \qquad ID:
6. (12 pts) Find the Laurent series of

$$
f(z)=\frac{1}{(z-1)(z-3)}
$$

in $\{z \in \mathbb{C}|0<|z-1|<2\}$.
Proof. We have for $z \neq 1$ and $z \neq 3$

$$
\frac{-1}{2(z-1)}+\frac{1}{2(z-3)}=\frac{-(z-3)+(z-1)}{2(z-1)(z-3)}=f(z) .
$$

For $z \in \mathbb{C}$ with $0<|z-1|<2$, we have $\frac{|z-1|}{2}<1$ and thus

$$
\begin{aligned}
f(z) & =\frac{-1}{2(z-1)}+\frac{1}{2(z-3)}=\frac{-1}{2(z-1)}+\frac{1}{2((z-1)-2)} \\
& =\frac{-1}{2(z-1)}+\frac{1}{4} \frac{1}{\frac{z-1}{2}-1}=\frac{-1}{2(z-1)}-\frac{1}{4} \frac{1}{1-\frac{z-1}{2}} \\
& =\frac{-1}{2(z-1)}-\frac{1}{4} \sum_{n=0}^{\infty}\left(\frac{z-1}{2}\right)^{n}=\frac{-1}{2(z-1)}-\sum_{n=0}^{\infty} \frac{(z-1)^{n}}{2^{n+2}} .
\end{aligned}
$$

Name: \qquad ID: \qquad
7. (12 pts, 4 pts each) Let

$$
f(z)=\frac{1}{(z-2)(z-4)} .
$$

Find the contour integrals of f along the circles about the origin of radius 1,3 and 5 , taken in counterclockwise direction.

Proof. Define curves $\gamma_{1}, \gamma_{3}, \gamma_{5}:[0,2 \pi] \rightarrow \mathbb{C}$ by $\gamma_{1}(t)=e^{i t}, \gamma_{3}(t)=3 e^{i t}, \gamma_{5}(t)=5 e^{i t}$. These curve parametrise the circles about the origin of radius 1,3 and 5 , all in counterclockwise direction.

As a rational function, f is analytic in the whole plane with the only exceptions being the zeros of the denominator, i.e. f is analytic in $\mathbb{C} \backslash\{2,4\}$. In particular, f is analytic inside and on γ_{1}. By the Cauchy-Goursat theorem, this yields

$$
\int_{\gamma_{1}} f(z) d z=0
$$

Furthermore, we have that 2 lies inside γ_{3}, but 4 lies outside γ_{3}. By Cauchy's residue theorem, this yields

$$
\int_{\gamma_{3}} f(z) d z=2 \pi i \operatorname{Res}_{z=2} f(z)
$$

and since both 2 and 4 lie inside γ_{5}

$$
\int_{\gamma_{5}} f(z) d z=2 \pi i\left(\operatorname{Res}_{z=2} f(z)+\operatorname{Res}_{z=4} f(z)\right) .
$$

Since both 2 and 4 are simple poles of $f\left(\frac{1}{z-4}\right.$ and $\frac{1}{z-2}$ are analytic and nonzero at 2 and 4 , respectively), we get

$$
\operatorname{Res}_{z=2} f(z)=\frac{1}{2-4}=-\frac{1}{2} \quad \text { and } \quad \operatorname{Res}_{z=4} f(z)=\frac{1}{4-2}=\frac{1}{2} .
$$

Thus,

$$
\int_{\gamma_{3}} f(z) d z=-\pi i \quad \text { and } \quad \int_{\gamma_{5}} f(z) d z=0 .
$$

Continue on page 8

Name: \qquad ID: \qquad
8. (20 pts, 10 pts each) Compute both
a)

$$
\int_{0}^{\infty} \frac{1}{1+x^{4}} d x \quad \text { and }
$$

b)

$$
\int_{-\infty}^{\infty} \frac{x \sin (a x)}{x^{4}+4} d x \quad \text { where } a>0
$$

using residues.
Proof. For $R>0$, we define $\gamma_{1}:[-R, R] \rightarrow \mathbb{C}, \gamma_{1}(t)=t$, and $\gamma_{2}:[0, \pi] \rightarrow \mathbb{C}, \gamma_{2}(t)=R e^{i t}$. Furthermore, let $\gamma_{R}=\gamma_{1}+\gamma_{2}$. This curve consists of the real integral $[-R, R]$ and the semicircle of radius R in the upper half plane, taken in positive orientation.
a) The integrand $f(z)=\frac{1}{z^{4}+1}$ is analytic in the entire plane with the only exception being its singular points which are the $4^{\text {th }}$ roots of -1 , i.e.

$$
e^{i \frac{\pi}{4}}, \quad e^{i \frac{3 \pi}{4}}, e^{i \frac{5 \pi}{4}}, e^{i \frac{7 \pi}{4}}
$$

Only $e^{i \frac{\pi}{4}}=\frac{1+i}{\sqrt{2}}$ and $e^{i \frac{3 \pi}{4}}=\frac{-1+i}{\sqrt{2}}$ lie in the upper half plane, $e^{i \frac{5 \pi}{4}}=\frac{-1-i}{\sqrt{2}}$ and $e^{i \frac{7 \pi}{4}}=\frac{1-i}{\sqrt{2}}$ both lie in the lower half plane. There is no singular point on the real line. If we choose $R>1$, then both $e^{i \frac{\pi}{4}}$ and $e^{i \frac{3 \pi}{4}}$ lie inside γ_{R}.

Both points are simple poles of $f\left(f=p / q, p(z)=1, q(z)=z^{4}+1, q^{\prime}(z)=4 z^{3}\right.$, $\left.q\left(e^{i \frac{\pi}{4}}\right)=0=q\left(e^{i \frac{3 \pi}{4}}\right), q^{\prime}\left(e^{i \frac{\pi}{4}}\right) \neq 0 \neq q^{\prime}\left(e^{i \frac{3 \pi}{4}}\right)\right)$. Thus,

$$
\operatorname{Res}_{z=e^{i \frac{\pi}{4}}} f(z)=\frac{1}{4\left(e^{i \frac{\pi}{4}}\right)^{3}}=\frac{1}{4 e^{i \frac{3 \pi}{4}}}=\frac{-1}{4} e^{i \frac{\pi}{4}} \quad \text { and } \quad \operatorname{Res}_{z=e^{i \frac{3 \pi}{4}}}=\frac{1}{4 e^{i \frac{9 \pi}{4}}}=\frac{-1}{4} e^{i \frac{3 \pi}{4}} .
$$

Using Cauchy's residue theorem, we get

$$
\int_{\gamma_{R}} f(z) d z=2 \pi i\left(-\frac{1}{4} e^{i \frac{\pi}{4}}-\frac{1}{4} e^{i \frac{3 \pi}{4}}\right)=\frac{-\pi i}{2 \sqrt{2}}(1+i+(-1+i))=\frac{\pi}{\sqrt{2}}
$$

Furthermore, $|f(z)| \leq \frac{1}{R^{4}-1}$ for z on γ_{2} and $L\left(\gamma_{2}\right)=\pi R$. Thus,

$$
\left|\int_{\gamma_{2}} f(z) d z\right| \leq \frac{\pi R}{R^{4}-1} \rightarrow 0 \quad \text { as } \quad R \rightarrow \infty .
$$

\qquad ID: \qquad
Thus,

$$
\begin{aligned}
\frac{\pi}{\sqrt{2}} & =\lim _{R \rightarrow \infty} \int_{\gamma_{R}} f(z) d z=\lim _{R \rightarrow \infty}\left(\int_{\gamma_{1}} f(z) d z+\int_{\gamma_{2}} f(z) d z\right) \\
& =\lim _{R \rightarrow \infty} \int_{-R}^{R} f(x) d x+\lim _{R \rightarrow \infty} \int_{\gamma_{2}} f(z) d z=\text { P.V. } \int_{-\infty}^{\infty} \frac{1}{x^{4}+1} d x+0 .
\end{aligned}
$$

Since $\frac{1}{x^{4}+1}$ is an even function, we get

$$
\text { P.V. } \int_{-\infty}^{\infty} \frac{1}{x^{4}+1} d x=\int_{-\infty}^{\infty} \frac{1}{x^{4}+1} d x=2 \int_{0}^{\infty} \frac{1}{x^{4}+1} d x
$$

and hence

$$
\int_{0}^{\infty} \frac{1}{x^{4}+1} d x=\frac{\pi}{2 \sqrt{2}}
$$

b) The function $f(z)=\frac{z}{z^{4}+4}$ has four singular points at the $4^{\text {th }}$ roots of -4 , i.e. at

$$
\sqrt{2} e^{i \frac{\pi}{4}}, \quad \sqrt{2} e^{i \frac{3 \pi}{4}}, \quad \sqrt{2} e^{i \frac{i \pi}{4}}, \sqrt{2} e^{i \frac{7 \pi}{4}}
$$

As in a), only the first two lie in the upper half plane, the other two in the lower half plane, and none on the real line. Write $z_{1}=\sqrt{2} e^{i \frac{\pi}{4}}$ and $z_{2}=\sqrt{2} e^{i \frac{3 \pi}{4}}$. For $R>\sqrt{2}$, both z_{1} and z_{2} also lie inside γ_{R}. Since $f(z) e^{i a z}$ has the same singular points as $f(z)$, we get by Cauchy's residue theorem

$$
\int_{\gamma_{R}} f(z) e^{i z} d z=2 \pi i\left(\operatorname{Res}_{z=z_{1}} f(z) e^{i a z}+\operatorname{Res}_{z=z_{2}} f(z) e^{i a z}\right)
$$

With the same argument as in a), we see that z_{1} and z_{2} are simple poles of $f(z) e^{i a z}$ and the residues are

$$
\underset{z=z_{1}}{\operatorname{Res}^{2}} f(z) e^{i a z}=\frac{z_{1} e^{i a z_{1}}}{4 z_{1}^{3}}=\frac{e^{i a z_{1}}}{4 z_{1}^{2}}=\frac{e^{i a z_{1}}}{8 e^{i \frac{\pi}{2}}}=\frac{e^{i a z_{1}}}{8 i}
$$

and

$$
\operatorname{Res}_{z=z_{2}} f(z) e^{i a z}=\frac{z_{2} e^{i a z_{2}}}{4 z_{2}^{3}}=\frac{e^{i a z_{2}}}{4 z_{2}^{2}}=\frac{e^{i a z_{2}}}{8 e^{i \frac{3 \pi}{2}}}=\frac{e^{i a z_{2}}}{-8 i} .
$$

Since $z_{1}=\sqrt{2} e^{i \frac{\pi}{4}}=1+i$ and $z_{2}=-1+i$, we get

$$
\begin{aligned}
\int_{\gamma_{R}} f(z) e^{i a z} d z & =\frac{2 \pi i}{8 i}\left(e^{i a z_{1}}-e^{i a z_{2}}\right)=\frac{\pi}{4}\left(e^{i a-a}-e^{-i a-a}\right) \\
& =\frac{\pi e^{-a}}{4}\left(e^{i a}-e^{-i a}\right)=\frac{\pi e^{-a} 2 i}{4} \sin (a)
\end{aligned}
$$

\qquad
Since

$$
\begin{aligned}
\frac{\pi e^{-a} 2 i}{4} \sin (a) & =\int_{\gamma_{R}} f(z) e^{i a z} d z=\int_{\gamma_{1}} f(z) e^{i a z} d z+\int_{\gamma_{2}} f(z) e^{i a z} d z \\
& =\int_{-R}^{R} \frac{x}{x^{4}+4} e^{i a x} d x+\int_{\gamma_{2}} f(z) e^{i a z} d z
\end{aligned}
$$

we get

$$
\begin{aligned}
\frac{\pi e^{-a}}{2} \sin (a) & =\operatorname{Im}\left(\int_{-R}^{R} \frac{x}{x^{4}+4} e^{i a x} d x+\int_{\gamma_{2}} f(z) e^{i a z} d z\right) \\
& =\int_{-R}^{R} \frac{x \sin (a x)}{x^{4}+4} d x+\operatorname{Im}\left(\int_{\gamma_{2}} f(z) e^{i a z}\right)
\end{aligned}
$$

For $t \in[0, \pi]$, we have

$$
f\left(\gamma_{2}(t)\right) e^{i a \gamma_{2}(t)}=\frac{R e^{i t}}{R^{4} e^{i 4 t}+4} e^{i a R(\cos (t)+i \sin (t))}=\frac{r e^{i t}}{R^{4} e^{i 4 t}+4} e^{i a R \cos (t)} e^{-a R \sin (t)}
$$

Since $\sin (t) \geq 0$ for these t and both $a, R>0$, we get

$$
\left|f\left(\gamma_{2}(t)\right) e^{i a \gamma_{2}(t)}\right| \leq \frac{R}{R^{4}-4} e^{-a R \sin (t)} \leq \frac{R}{R^{4}-4}
$$

which implies with $L\left(\gamma_{2}\right)=\pi R$

$$
\left|\operatorname{Im}\left(\int_{\gamma_{2}} f(z) e^{i a z} d z\right)\right| \leq\left|\int_{\gamma_{2}} f(z) e^{i a z} d z\right| \leq \frac{\pi R^{2}}{R^{4}-4} \rightarrow 0 \quad \text { as } \quad R \rightarrow \infty
$$

Combined,

$$
\frac{\pi e^{-a}}{2} \sin (a)=\lim _{R \rightarrow \infty} \int_{-R}^{R} \frac{x \sin (a x)}{x^{4}+4} d x=\text { P.V. } \int_{-\infty}^{\infty} \frac{x \sin (a x)}{x^{4}+4} d x .
$$

Since $\frac{x \sin (a x)}{x^{4}+4}$ is even, we get

$$
\int_{-\infty}^{\infty} \frac{x \sin (a x)}{x^{4}+4} d x=\frac{\pi e^{-a}}{2} \sin (a) .
$$

