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MAT 342 Applied Complex Analysis
Final Exam Example

May 2016

1. (12 pts, 4 pts each)

a) Define the notion complex differentiable.

Let S ⊂ C be an open set and let f : S → C be a function. Let z0 ∈ S. The
function f is called (complex) differentiable at z0 if the limit

lim
z→z0

f(z)− f(z0)
z − z0

exists.

b) Define the principle branch of the logarithm.

The principle branch of the logarithm is defined by

Log(z) = ln(|z|) + iArg(z),

where z ∈ C \ {r ∈ R | r ≤ 0} and −π < Arg(z) < π.

c) State Cauchy’s residue theorem.

Let C be a simple closed, positively oriented contour, and let f be a function
which is analytic on C and inside C with the possible exception of finitely many
points zk (k = 1, . . . , n) inside C. Then

∫

C

f(z)dz = 2πi
n∑

k=1

Res
z=z0

f(z).

Continue on page 2
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2. (12 pts, 4 pts each)

a) Find the multiplicative inverse of 3 + 4i and write the solution in rectangular
form.

b) Find all z ∈ C such that z2 = 4i.

c) Prove the triangle inequality: For all z, w ∈ C, the inequality

|z + w| ≤ |z|+ |w|

holds.

a)

(3 + 4i)−1 =
1

3 + 4i
=

3− 4i

9 + 16
=

3

25
− i 4

25
.

b) We have 4i = 4ei
π
2 . Thus, the two complex roots are

√
4ei

π
4 = 2ei

π
4 = 2

1√
2
+ i2

1√
2
=
√
2 + i

√
2

and √
4ei(

π
4
+π) = −2eiπ4 = −

√
2− i

√
2.

c) Let z, w ∈ C. Since |z|2 = zz, we get

|z + w|2 = (z + w)(z + w) = (z + w)(z + w) = zz + zw + wz + ww

= |z|2 + zw + zw + |w|2 = |z|2 + 2Re(zw) + |w|2

≤ |z|2 + 2|z||w|+ |w|2 = (|z|+ |w|)2.

Thus,
|z + w| ≤ |z|+ |w|.

Continue on page 3
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3. (10 pts) Find all z ∈ C such that

z4 + z3 + z2 + z + 1 = 0.

Proof. We have for z 6= 1

z4 + z3 + z2 + z + 1 =
z5 − 1

z − 1

(partial sum of the geometric series). Thus,

z4 + z3 + z2 + z + 1 = 0⇔ (z5 = 1 and z 6= 1).

Hence, all solutions of the equation are the non-trivial 5th roots of unity, i.e.

ei
2π
5 , ei

4π
5 , ei

6π
5 , ei

8π
5 .

Continue on page 4
3



Name: ID:

4. (12 pts) Let f be an entire function such that

f(z) = f(z + 1) = f(z + i)

for all z ∈ C. Prove that f is constant.

Proof. Let Q = {z ∈ C | 0 ≤ Rez, Imz ≤ 1}. Then for any w ∈ C there exists
some z ∈ Q such that f(z) = f(w) (write w = a + ib = (n + s) + i(m + r) for some
n,m ∈ Z and 0 ≤ s, r < 1). Since Q is bounded and closed (i.e. compact) and f is
continuous on Q, f is bounded on Q. Due to the argument above, f is bounded on
all of C. Thus, f is a bounded entire function which must be constant by Liouville’s
theorem.

Continue on page 5
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5. (10 pts) Let p be a polynomial of degree dp and let q be a polynomial of degree dq
with max{dp, dq} ≥ 1. Assume that q is not constantly 0 and that p and q do not
share a common zero. Let f : C \ {z ∈ C | q(z) = 0} → C be given by

f(z) =
p(z)

q(z)
.

Let z0 ∈ C. Prove that there exists some z ∈ C such that f(z) = z0.

Proof. We have

f(z) = z0 ⇔
p(z)

q(z)
= z0 ⇔ p(z) = z0q(z)⇔ p(z)− z0q(z) = 0.

Since p and q do not share a common zero, the zeros of q can’t be solutions. But
p − z0q is a polynomial of degree max{dp, dq} ≥ 1. Hence, it has at least one zero
z ∈ C by the Fundamental Theorem of Algebra. For this zero, f(z) = z0 holds.

Continue on page 6
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6. (12 pts) Find the Laurent series of

f(z) =
1

(z − 1)(z − 3)

in {z ∈ C | 0 < |z − 1| < 2}.

Proof. We have for z 6= 1 and z 6= 3

−1
2(z − 1)

+
1

2(z − 3)
=
−(z − 3) + (z − 1)

2(z − 1)(z − 3)
= f(z).

For z ∈ C with 0 < |z − 1| < 2, we have |z−1|
2

< 1 and thus

f(z) =
−1

2(z − 1)
+

1

2(z − 3)
=

−1
2(z − 1)

+
1

2((z − 1)− 2)

=
−1

2(z − 1)
+

1

4

1
z−1
2
− 1

=
−1

2(z − 1)
− 1

4

1

1− z−1
2

=
−1

2(z − 1)
− 1

4

∞∑

n=0

(
z − 1

2

)n
=

−1
2(z − 1)

−
∞∑

n=0

(z − 1)n

2n+2
.

Continue on page 7
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7. (12 pts, 4 pts each) Let

f(z) =
1

(z − 2)(z − 4)
.

Find the contour integrals of f along the circles about the origin of radius 1, 3 and
5, taken in counterclockwise direction.

Proof. Define curves γ1, γ3, γ5 : [0, 2π] → C by γ1(t) = eit, γ3(t) = 3eit, γ5(t) = 5eit.
These curve parametrise the circles about the origin of radius 1, 3 and 5, all in
counterclockwise direction.

As a rational function, f is analytic in the whole plane with the only exceptions
being the zeros of the denominator, i.e. f is analytic in C \ {2, 4}. In particular, f
is analytic inside and on γ1. By the Cauchy-Goursat theorem, this yields

∫

γ1

f(z)dz = 0.

Furthermore, we have that 2 lies inside γ3, but 4 lies outside γ3. By Cauchy’s residue
theorem, this yields ∫

γ3

f(z)dz = 2πiRes
z=2

f(z)

and since both 2 and 4 lie inside γ5
∫

γ5

f(z)dz = 2πi
(
Res
z=2

f(z) + Res
z=4

f(z)
)
.

Since both 2 and 4 are simple poles of f ( 1
z−4 and 1

z−2 are analytic and nonzero at 2
and 4, respectively), we get

Res
z=2

f(z) =
1

2− 4
= −1

2
and Res

z=4
f(z) =

1

4− 2
=

1

2
.

Thus, ∫

γ3

f(z)dz = −πi and
∫

γ5

f(z)dz = 0.

Continue on page 8
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8. (20 pts, 10 pts each) Compute both

a) ∫ ∞

0

1

1 + x4
dx and

b) ∫ ∞

−∞

x sin(ax)

x4 + 4
dx where a > 0

using residues.

Proof. For R > 0, we define γ1 : [−R,R]→ C, γ1(t) = t, and γ2 : [0, π]→ C, γ2(t) = Reit.
Furthermore, let γR = γ1 + γ2. This curve consists of the real integral [−R,R] and the
semicircle of radius R in the upper half plane, taken in positive orientation.
a) The integrand f(z) = 1

z4+1
is analytic in the entire plane with the only exception

being its singular points which are the 4th roots of −1, i.e.

ei
π
4 , ei

3π
4 , ei

5π
4 , ei

7π
4 .

Only ei
π
4 = 1+i√

2
and ei

3π
4 = −1+i√

2
lie in the upper half plane, ei

5π
4 = −1−i√

2
and ei

7π
4 = 1−i√

2

both lie in the lower half plane. There is no singular point on the real line. If we choose
R > 1, then both ei

π
4 and ei

3π
4 lie inside γR.

Both points are simple poles of f (f = p/q, p(z) = 1, q(z) = z4 + 1, q′(z) = 4z3,
q
(
ei
π
4

)
= 0 = q

(
ei

3π
4

)
, q′
(
ei
π
4

)
6= 0 6= q′

(
ei

3π
4

)
). Thus,

Res
z=ei

π
4

f(z) =
1

4
(
ei
π
4

)3 =
1

4ei
3π
4

=
−1
4
ei
π
4 and Res

z=ei
3π
4

=
1

4ei
9π
4

=
−1
4
ei

3π
4 .

Using Cauchy’s residue theorem, we get
∫

γR

f(z)dz = 2πi

(
−1

4
ei
π
4 − 1

4
ei

3π
4

)
=
−πi
2
√
2
(1 + i+ (−1 + i)) =

π√
2
.

Furthermore, |f(z)| ≤ 1
R4−1 for z on γ2 and L(γ2) = πR. Thus,
∣∣∣∣
∫

γ2

f(z)dz

∣∣∣∣ ≤
πR

R4 − 1
→ 0 as R→∞.
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Thus,

π√
2
= lim

R→∞

∫

γR

f(z)dz = lim
R→∞

(∫

γ1

f(z)dz +

∫

γ2

f(z)dz

)

= lim
R→∞

∫ R

−R
f(x)dx+ lim

R→∞

∫

γ2

f(z)dz = P.V.

∫ ∞

−∞

1

x4 + 1
dx+ 0.

Since 1
x4+1

is an even function, we get

P.V.

∫ ∞

−∞

1

x4 + 1
dx =

∫ ∞

−∞

1

x4 + 1
dx = 2

∫ ∞

0

1

x4 + 1
dx

and hence ∫ ∞

0

1

x4 + 1
dx =

π

2
√
2
.

b) The function f(z) = z
z4+4

has four singular points at the 4th roots of −4, i.e. at
√
2ei

π
4 ,

√
2ei

3π
4 ,

√
2ei

5π
4 ,

√
2ei

7π
4 .

As in a), only the first two lie in the upper half plane, the other two in the lower half plane,
and none on the real line. Write z1 =

√
2ei

π
4 and z2 =

√
2ei

3π
4 . For R >

√
2, both z1 and z2

also lie inside γR. Since f(z)eiaz has the same singular points as f(z), we get by Cauchy’s
residue theorem

∫

γR

f(z)eizdz = 2πi

(
Res
z=z1

f(z)eiaz + Res
z=z2

f(z)eiaz
)
.

With the same argument as in a), we see that z1 and z2 are simple poles of f(z)eiaz and
the residues are

Res
z=z1

f(z)eiaz =
z1e

iaz1

4z31
=
eiaz1

4z21
=
eiaz1

8ei
π
2

=
eiaz1

8i

and
Res
z=z2

f(z)eiaz =
z2e

iaz2

4z32
=
eiaz2

4z22
=

eiaz2

8ei
3π
2

=
eiaz2

−8i .

Since z1 =
√
2ei

π
4 = 1 + i and z2 = −1 + i, we get
∫

γR

f(z)eiazdz =
2πi

8i

(
eiaz1 − eiaz2

)
=
π

4

(
eia−a − e−ia−a

)

=
πe−a

4

(
eia − e−ia

)
=
πe−a2i

4
sin(a).
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Since

πe−a2i

4
sin(a) =

∫

γR

f(z)eiazdz =

∫

γ1

f(z)eiazdz +

∫

γ2

f(z)eiazdz

=

∫ R

−R

x

x4 + 4
eiaxdx+

∫

γ2

f(z)eiazdz,

we get

πe−a

2
sin(a) = Im

(∫ R

−R

x

x4 + 4
eiaxdx+

∫

γ2

f(z)eiazdz

)

=

∫ R

−R

x sin(ax)

x4 + 4
dx+ Im

(∫

γ2

f(z)eiaz
)

For t ∈ [0, π], we have

f(γ2(t))e
iaγ2(t) =

Reit

R4ei4t + 4
eiaR(cos(t)+i sin(t)) =

reit

R4ei4t + 4
eiaR cos(t)e−aR sin(t).

Since sin(t) ≥ 0 for these t and both a,R > 0, we get

∣∣f(γ2(t))eiaγ2(t)
∣∣ ≤ R

R4 − 4
e−aR sin(t) ≤ R

R4 − 4

which implies with L(γ2) = πR

∣∣∣∣Im
(∫

γ2

f(z)eiazdz

)∣∣∣∣ ≤
∣∣∣∣
∫

γ2

f(z)eiazdz

∣∣∣∣ ≤
πR2

R4 − 4
→ 0 as R→∞.

Combined,

πe−a

2
sin(a) = lim

R→∞

∫ R

−R

x sin(ax)

x4 + 4
dx = P.V.

∫ ∞

−∞

x sin(ax)

x4 + 4
dx.

Since x sin(ax)
x4+4

is even, we get

∫ ∞

−∞

x sin(ax)

x4 + 4
dx =

πe−a

2
sin(a).
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