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MAT 342 Applied Complex Analysis

Final Exam Example
May 2016

1. (12 pts, 4 pts each)
a) Define the notion complex differentiable.
Let S C C be an open set and let f : S — C be a function. Let 2y € S. The
function f is called (complex) differentiable at zq if the limit
o f) = I ()
=20 2 — 2
exists.
b) Define the principle branch of the logarithm.
The principle branch of the logarithm is defined by

Log(2) = In(|z]) + iArg(2),

where z € C\ {r e R | r <0} and —7 < Arg(z) < 7.
c) State Cauchy’s residue theorem.

Let C be a simple closed, positively oriented contour, and let f be a function
which is analytic on C' and inside C' with the possible exception of finitely many
points 2z (k=1,...,n) inside C. Then

/ f(z)dz = sz": Res f(2).
c =1

Continue on page 2
1



Name: ID:

2. (12 pts, 4 pts each)

a) Find the multiplicative inverse of 3 4+ 4¢ and write the solution in rectangular
form.

b) Find all z € C such that 2% = 4i.
c¢) Prove the triangle inequality: For all z,w € C, the inequality
|2+ w| < [z] + |wl

holds.

1 3_4i 3 4
3 4 71: = —_— —_— = '_'
T E T

b) We have 4i = 4¢'z . Thus, the two complex roots are

- - 1 1
\/4_16ZZ = 2e'1 = 2% + ZQ% = \/§+ Z\/§

and

Vae(F+m) — 9015 — _\/2 — iv/2.

c¢) Let z,w € C. Since |z|? = 2z, we get

|z +w* = (z+w)(z+w) = (2 +w)(Z+W) = 2Z + 20 + Wz + wo
= |2|* + 2w + 2w + |w|* = |2]* + 2Re(2W) + |w]|?
< |2 +2lzllwl + Jw|* = (|2] + [w])*.

Thus,
|2+ w| < 2] + |w].

Continue on page 3
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3. (10 pts) Find all z € C such that
A Bl 241=0.
Proof. We have for z # 1

25 —1

AP+l a4 1=
z—1

(partial sum of the geometric series). Thus,
4.3 2 _ 5 _
242+ 22+24+1=0< (2>=1and z # 1).
Hence, all solutions of the equation are the non-trivial 5 roots of unity, i.e.

’izi - 47 - 6 - 87
e’s , e's  e's e'’s .

Continue on page 4
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. (12 pts) Let f be an entire function such that

f@) =fz+1)=f(z+1)
for all z € C. Prove that f is constant.

Proof. Let Q@ = {z € C| 0 < Rez,Imz < 1}. Then for any w € C there exists
some z € @ such that f(z) = f(w) (write w = a +ib = (n+ s) + i(m + r) for some
n,m € Z and 0 < s,r < 1). Since @ is bounded and closed (i.e. compact) and f is
continuous on ), f is bounded on (). Due to the argument above, f is bounded on
all of C. Thus, f is a bounded entire function which must be constant by Liouville’s

theorem. O]

Continue on page 5
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. (10 pts) Let p be a polynomial of degree d, and let ¢ be a polynomial of degree d,
with max{d,,d,} > 1. Assume that ¢ is not constantly 0 and that p and ¢ do not
share a common zero. Let f: C\ {z € C | ¢q(z) =0} — C be given by

)

_ 1)

Let zp € C. Prove that there exists some z € C such that f(z) = z.

Proof. We have

p(z
f(z) =2 & % = 20 < p(z) = 20¢(2) < p(2) — 204(z) = 0.
Since p and ¢ do not share a common zero, the zeros of ¢ can’t be solutions. But
p — zoq is a polynomial of degree max{d,,d,} > 1. Hence, it has at least one zero

z € C by the Fundamental Theorem of Algebra. For this zero, f(z) = zo holds. [J

Continue on page 6
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6. (12 pts) Find the Laurent series of

1
TG = oo =3
in{zreC|0<|z—-1] <2}
Proof. We have for z # 1 and z # 3
-1 I —(z=3)+(=z-1)
oty T 2eone—s /@
For z € C with 0 < |z — 1] < 2, Wehave| !l <1 and thus
-1 1 -1 1
S Al P s TPy el P s T Py
1 1 -1 11
_2(2—1)+171—1_2(z—1)_11—%
B I = (z—1 ~1 L (z—1)"
T 2(z— _Z;( ) 2(z—1)_n§::O on+2

Continue on page 7
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. (12 pts, 4 pts each) Let
1

&) =9
Find the contour integrals of f along the circles about the origin of radius 1, 3 and
5, taken in counterclockwise direction.

Proof. Define curves vi,7s,7s : [0,27] — C by 11(t) = €%, 3(t) = 3e®, y5(t) = 5e'.
These curve parametrise the circles about the origin of radius 1, 3 and 5, all in
counterclockwise direction.

As a rational function, f is analytic in the whole plane with the only exceptions
being the zeros of the denominator, i.e. f is analytic in C\ {2,4}. In particular, f
is analytic inside and on ;. By the Cauchy-Goursat theorem, this yields

/71 F(2)dz = 0.

Furthermore, we have that 2 lies inside 73, but 4 lies outside v3. By Cauchy’s residue
theorem, this yields

/ f(2)dz = 2mi E{:eésf(z)

and since both 2 and 4 lie inside 5
/ f(2)dz = 2mi (Re2sf(z) + Re;f(z)) .
75 7= 7=

Since both 2 and 4 are simple poles of f (Z—Ll and ﬁ are analytic and nonzero at 2
and 4, respectively), we get

Resf2) =53~ —% and - Res f(2) = =5 = 5

Thus,
/ f(z)dz = —mi and / f(z)dz = 0.

Continue on page 8
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8. (20 pts, 10 pts each) Compute both
a)

1
/ dr and
o 1+at

/ Mdm where a > 0
oo TP +A4

using residues.

Proof. For R > 0, we define v, : [-R, R] — C, 1(t) = t, and 7, : [0, 7] — C, 1»(t) =

Reit

Furthermore, let v = 71 4+ 2. This curve consists of the real integral [—R, R] and the

semicircle of radius R in the upper half plane, taken in positive orientation.
a) The integrand f(z) = =5
being its singular points which are the 4" roots of —1, i.e.

1412 —1+1, —1—1

V2

Only €'7 = and ¢'f =

both lie in the lower half plane There is no singular point on the real line. If we choo

R > 1, then both €'F and ¢’ T lie inside YR-

Both points are simple poles of f (f = p/q, p(z) = 1, q(z) = 2* + 1, ¢(2) =

q(ei%):0:q(ei%), ( )#0#(]( )) Thus,

1 1 _1 ST 1 _1 - 3T
Res f(z2) = —— = —5=—¢1 and Res = —5 = — i
r=e' 4(612) 4evs 4 i3 4etr 4

Using Cauchy’s residue theorem, we get

[YRf(Z)dz:%ri (—}leil—ieﬁ) 2\/—(1+z+( 1+14)) =

Furthermore, |f(2)| < = for z on v, and L(7,) = wR. Thus,

5

f(z)dz §RZ_1—>0 as R — oo.

2

lie in the upper half plane, € T = 7 and ¢’ =

is analytic in the entire plane with the only exception

= 1=
7
ose

423,
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Thus,
T
— = lim z)dz = lim / zdz—i—/ zdz)
5= [ sz g ([ s [ g6
R 0
. : 1
= éggo/_Rf(x)dx—kl%gr;o/w f(z)dz = P.V. /_OO T 1d:v +0.
Since x++1 is an even function, we get
>~ 1 < 1 >~ 1
PV. = dr =2 —d
V/Oox4+1dI /oox4—|—1x /0 1
and hence -
/ 1 g — T
o zt+1 2v2
b) The function f(2) = 5 has four singular points at the 4™ roots of —4, i.e. at

V2T V2T V2T V2ET

As in a), only the first two lie in the upper half plane, the other two in the lower half plane,
and none on the real line. Write z; = v/2¢'% and 2z, = \/iei%ﬂ. For R > \/5, both z; and 2z,
also lie inside yg. Since f(z)e™®* has the same singular points as f(z), we get by Cauchy’s

residue theorem
/ f(Z)eide = 2m (Res f(Z)ewZ + Resf(z)é‘”) .
TR Z2=2z1 2=z

With the same argument as in a), we see that z; and 2, are simple poles of f(z)e™* and

the residues are

1az1 iaz1 1az1 iaz1
Res f(2)e'* = ne  _f __f ¢
= 42 422 85 8i
z=z1 23 z7 8e'2 {

and

1az2 iaz2 iaz2 iaz2
Res f(2)ei" e e e _ e
z=22 423 472 % —8i

2 2 8e' 2

Since z; = /2¢'T =1+ and 2 = —1 + i, we get
, 2mi , : T, .
f(z)ezazdz = (ezaz1 . ezazz) — (eza—a o e—za—a)
/, ; :
me i ey meT2
=) =

sin(a).
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Since
—a93 . . .
Te 2 sin(a) = / f(z)e"*%dz = / f(z)e"**dz +/ f(z)e**dz
4 TR 71 72
R T . .
we get

—a R
m; sin(a) = Im </R x4i 4emxdx +/ f(z)ewzdz)
B g sin(ax)
— I 'La/Z
/R$4+4d+m</f )
For t € [0, 7], we have

) Rett . . reit ) .
taya(t) __ iaR(cos(t)+isin(t)) __ iaR cos(t) ,—aRsin(t)
F(ra(t))e ™ = R4€i4t+4€ T Rieitt 4 4 € :

Since sin(t) > 0 for these ¢ and both a, R > 0, we get

R nanty R
alfvsin <
Ri—4° S R4

[ f(a(t)e=0] <

which implies with L(y,) = 7R

2

Im f(2)e™dz || < )e dz| < - —0 as R — oc.
72 V2 Rt —4
Combined,
—a R : 0o .
e sin(a) = lim xsin—(aa:)dx = P.V./ de.
R—oo [_p xt 44 e T HA4
Since %ﬁf) is even, we get

[ = T o)

—00
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