Final Exam

Examination time: 8:00-10:30 am. No electronic devices, books or notes. Show all your work.

Name			
Student ID#			

Problem #	Points/total
1	/5
2	/5
3	/10
4	/10
5	/20
6	/15
7	/15
8	/20
Total	/100

Traine

Problem 1 (5pt). Find all complex values of $1^{\sqrt{2}}$. Give the answer in the form a + ib.

Problem 2 (5pt). Let f(x+iy)=u(x,y)+iv(x,y) be an analytic function. Prove that $\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}=0.$

Problem 3 (10pt). Find the image of the set $\{(x,y) \in \mathbb{C} \mid 0 < x < 1\}$ under the transformation

$$f(z) = \frac{z-1}{z-2}.$$

Name _____

Problem 4 (10pt). Evaluate the integral

$$\int\limits_C |z|\,\overline{z}\,dz,$$

where C is the boundary of the set $\{z \in \mathbb{C} \mid |z| \le 1, \text{ Im } z \ge 0\}$ taken in the counterclockwise direction.

Problem 5 (20pt). In which domains is the function $f(z) = \frac{1}{(z-1)(z-i)}$ represented by Laurent series in powers of z? Find the Laurent series in the unbounded domain.

Problem 6 (15pt). Evaluate the integral

$$\oint\limits_C \frac{z+1}{e^z+1} \, dz,$$

where C is the circle |z|=4 taken in the counterclockwise direction.

Name		

Problem 7 (15pt). Find and classify all singularities of the function $f(z) = \frac{z - \pi}{\sin 2z}$. Find the principal part of Laurent expansion of f about $z = 2\pi$.

Problem 8 (20pt). Evaluate the integral

$$\int\limits_{0}^{\infty}\frac{x^{2}}{x^{4}+1}\,dx.$$

Explain carefully each step in your calculation.