MAT342 Homework 11 Solutions

Due Wednesday, May 1

1. Use residues to show that $\int_{-\infty}^{\infty} \frac{d x}{\left(x^{2}+1\right)^{2}}=\frac{\pi}{2}$.

Observe that $f(x)=1 /\left(x^{2}+1\right)^{2}$ is even, so the Cauchy principal value and the improper integral coincide.

The function $f(z)$ has a pole of order two at i (and also at $-i$, which is irrelevant for our purposes), with residue $-i / 4$. Let \mathcal{C}_{R} be the positively oriented semicircle $|z|=R$ with $0 \leq \arg z \leq \pi$. Then by the Cauchy-Goursat theorem, for any $R>1$

$$
\int_{-R}^{R} \frac{d x}{\left(1+x^{2}\right)^{2}}+\int_{\mathcal{C}_{R}} \frac{d z}{\left(1+z^{2}\right)^{2}}=2 \pi i \operatorname{Res}_{z=i} f(z)=\frac{\pi}{2} .
$$

Furthermore, $|f(z)| \leq 1 /\left(R^{2}-1\right)^{2}$ for $z \in \mathcal{C}_{R}$, and so

$$
\lim _{R \rightarrow \infty}\left|\int_{\mathcal{C}_{R}} \frac{d z}{\left(z^{2}+1\right)^{2}}\right| \leq \lim _{R \rightarrow \infty} \frac{\pi R}{\left(R^{2}-1\right)^{2}}=0
$$

Thus

$$
\frac{\pi}{2}=\lim _{R \rightarrow \infty}\left(\int_{-R}^{R} \frac{d x}{\left(1+x^{2}\right)^{2}}+\int_{\mathcal{C}_{R}} \frac{d z}{\left(1+z^{2}\right)^{2}}\right)=\int_{-\infty}^{\infty} \frac{d x}{\left(1+x^{2}\right)^{2}}+0
$$

2. Using residues, show that $\int_{0}^{\infty} \frac{x^{2} d x}{\left(x^{2}+9\right)\left(x^{2}+4\right)^{2}}=\frac{\pi}{200}$.

The function $f(z)=\frac{z^{2}}{\left(z^{2}+9\right)\left(z^{2}+4\right)^{2}}$ has simple poles at $z= \pm 3 i$ and poles of order 2 at $z= \pm 2 i$. The poles in the upper half-plane have residues of $3 i / 50$ and $-13 i / 200$, respectively. Let \mathcal{C} be the usual positively oriented contour consisting of the semi-circle of radius R around the origin followed by the segment of the real axis from $-R$ to R. For $R>3$ we have

$$
\int_{\mathcal{C}} f(z) d z=2 \pi i\left(\frac{3 i}{50}-\frac{13 i}{200}\right)=\frac{\pi}{100} .
$$

We need to confirm that the integral over the semicircle tends to 0 as $R \rightarrow \infty$, but since $|f(z)|<\frac{R^{2}}{\left(R^{2}-9\right)\left(R^{2}-4\right)^{2}}$, this follows readily.

Thus,

$$
\frac{\pi}{100}=\lim _{R \rightarrow \infty} \int_{\mathcal{C}} f(z) d z=\lim _{R \rightarrow \infty}\left(\int_{|z|=R} f(z) d z+\int_{-R}^{R} f(z) d z\right)=0+\int_{-\infty}^{\infty} \frac{x^{2} d x}{\left(x^{2}+9\right)\left(x^{2}+4\right)^{2}}
$$

Since f is an even function, the integral from 0 to ∞ is half of the above, as desired.
3. Using a contour like the one at right with R sufficiently large, show that $\int_{0}^{\infty} \frac{d x}{x^{3}+8}=\frac{\pi}{6 \sqrt{3}}$.
As in the previous problems, we express the desired integral as part of a larger contour which surrounds a singular point, and write $f(z)=1 /\left(z^{3}+8\right)$. Here the relevant singularity is the pole at $z=2 e^{\pi i / 3}$ and

$$
\operatorname{Res}_{z=2 e^{\pi i / 3}} f(z)=\frac{1}{3\left(2 e^{\pi i / 3}\right)^{2}}=\frac{1}{12 e^{2 \pi i / 3}}=\frac{1}{-6+6 i \sqrt{3}} .
$$

(The other two poles are at -1 and $z=2 e^{-\pi i / 3}$ and lie outside of the contour.)
As in the figure, let \mathcal{C}_{R} be the part of the positively oriented circle with $0 \leq \arg z \leq 2 \pi i / 3$ and $|z|=R$ with $R>2$, and let γ represent the angled leg of the sector, and β be the part along the real axis. Take the contour \mathcal{C} to be \mathcal{C}_{R} followed by γ followed by β; the Cachy-Goursat theorem gives

$$
\begin{equation*}
\frac{2 \pi i}{12 e^{2 \pi i / 3}}=\int_{\mathcal{C}} f(z) d z=\int_{\mathcal{C}_{R}} f(z) d z+\int_{\gamma} f(z) d z+\int_{\beta} f(x) d x . \tag{1}
\end{equation*}
$$

Since $|f(z)| \leq \frac{1}{R^{3}-8}$ for $z \in \mathcal{C}_{R}$, it is easy to see that $\lim _{R \rightarrow \infty} \int_{\mathcal{C}_{R}} f(z) d z=0$.
Observe that we can parameterize β as $z=x$ with $0 \leq x \leq R$, and $-\gamma$ as $z=x e^{2 \pi i / 3}$ with $0 \leq x \leq R$. Using this parameterization, we see that

$$
\begin{aligned}
& \int_{\gamma} f(z) d z=-\int_{-\gamma} f(z) d z=-\int_{0}^{R} \frac{e^{2 \pi i / 3} d x}{\left(x e^{2 \pi i / 3}\right)^{3}+1}=-e^{2 \pi i / 3} \int_{0}^{R} \frac{d x}{x^{3}+1}=-e^{2 \pi i / 3} \int_{\beta} f(x) d x \\
& \text { that is, } \int_{\beta} f(z) d z+\int_{\gamma} f(z) d z=\left(1-e^{2 \pi i / 3}\right) \int_{0}^{R} f(x) d x
\end{aligned}
$$

Combining this with eq. (1) and taking the limit as $R \rightarrow \infty$ gives

$$
\frac{\pi i}{6 e^{2 \pi i / 3}}=\lim _{R \rightarrow \infty}\left(1-e^{2 \pi i / 3}\right) \int_{0}^{R} f(x) d x=\left(1-e^{2 \pi i / 3}\right) \int_{0}^{\infty} f(x) d x
$$

Hence

$$
\int_{0}^{\infty} f(x) d x=\frac{\pi i}{6 e^{2 \pi i / 3}\left(1-e^{2 \pi i / 3}\right)}=\frac{\pi i}{6\left(e^{2 \pi i / 3}-e^{4 \pi i / 3}\right)}=\frac{\pi i}{6\left(\frac{-1+\sqrt{3} i}{2}-\frac{-1-\sqrt{3} i}{2}\right)}=\frac{\pi}{6 \sqrt{3}} .
$$

4. Using residues, show that $\int_{-\infty}^{\infty} \frac{\cos 5 x}{x^{2}+1} d x=\frac{\pi}{e^{5}}$.

Let $f(x)=1 /\left(x^{2}+1\right)$ and we integrate $f(z) e^{5 i z}$ over the contour \mathcal{C} consisting of the segment from $-R$ to R along the real axis followed by the semicircle \mathcal{C}_{R} of radius R in the upper half-plane (with $R>1$).

Since $|f(z)| \rightarrow 0$ on \mathcal{C}_{R} as $R \rightarrow \infty$, Jordan's Lemma tells us that $\lim _{R \rightarrow \infty} \int_{\mathcal{C}_{R}} f(z) e^{5 i z} d z=0$, so

$$
\int_{\mathcal{C}} \frac{e^{5 i z} d z}{z^{2}+1}=\int_{z \in \mathbb{R}} \frac{\cos 5 z+i \sin 5 z}{z^{2}+1} d z
$$

and we can find the desired integral by taking the real part of both sides.
The residue at $z=i$ of $e^{5 i z} /\left(z^{2}+1\right)$ is just $\phi(i)$ where $\phi(z)=e^{5 i z} /(z+i)$, so we get $-i /\left(2 e^{5}\right)$. Hence we have

$$
\int_{-\infty}^{\infty} \frac{\cos 5 x}{x^{2}+1} d x=\operatorname{Re}\left(\int_{\mathcal{C}} \frac{e^{5 i z} d z}{z^{2}+1}\right)=\operatorname{Re}\left(2 \pi i \operatorname{Res}_{z=i} \frac{e^{5 i z} d z}{z^{2}+1}\right)=\frac{\pi}{e^{5}}
$$

5. Use residues to calculate $\int_{0}^{\infty} \frac{x^{3} \sin x}{\left(x^{2}+1\right)\left(x^{2}+9\right)} d x$.

This is similar to the previous problem.
Specifically, let $f(x)=x^{3} /\left(\left(x^{2}+1\right)\left(x^{2}+9\right)\right)$ and integrate $f(z) e^{i z}$ over the contour \mathcal{C} consisting of the segment from $-R$ to R along the real axis followed by the semicircle \mathcal{C}_{R} of radius R in the upper half-plane (with $R>3$).

The function $f(z) e^{i z}$ has simple poles at $z= \pm i$ and $z= \pm 3 i$, and the two residues inside the contour \mathcal{C} are $-1 /(16 e)$ and $9 /\left(16 e^{3}\right)$, respectively.

As in the previous problem, $|f(z)| \rightarrow 0$ on \mathcal{C}_{R} as $R \rightarrow \infty$, and so Jordan's Lemma tells us that $\lim _{R \rightarrow \infty} \int_{\mathcal{C}_{R}} f(z) e^{i z} d z=0$.

Putting this all together gives

$$
\int_{-\infty}^{\infty} \frac{x^{3} \cos x d x}{\left(x^{2}+1\right)\left(x^{2}+9\right)}=\operatorname{Im}\left(\int_{\mathcal{C}} \frac{x^{3} e^{i z} d z}{\left(z^{2}+1\right)\left(z^{2}+9\right)}\right)=\operatorname{Im}\left(2 \pi i\left(\frac{9}{16 e^{3}}-\frac{1}{16 e}\right)\right)=\frac{\left(9-e^{2}\right) \pi}{8 e^{3}}
$$

Since $f(x) \sin x$ is an even function, we have

$$
\int_{0}^{\infty} \frac{x^{3} \cos x d x}{\left(x^{2}+1\right)\left(x^{2}+9\right)}=\frac{\left(9-e^{2}\right) \pi}{16 e^{3}}
$$

