MAT342 Homework 11 Solutions
Due Wednesday, May 1
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1. Use residues to show that /_ JEFIE T 2
Observe that f(x) = 1/(x>+ 1) is even, so the Cauchy principal value and the improper
integral coincide.
The function f(z) has a pole of order two at i (and also at —i, which is irrelevant for
our purposes), with residue —i/4. Let Cg be the positively oriented semicircle |z| = R with
0 <argz<m. Then by the Cauchy-Goursat theorem, for any R > 1
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Furthermore, |f(z)| < 1/(R*—1)? for z € Cg, and so
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Thus
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. Using residues, show that/0 (x2 +9)(x2+4)2 = 200 °

The function f(z) = m has simple poles at z = +3i and poles of order 2 at z = £2i.

The poles in the upper half-plane have residues of 3i/50 and —13i/200, respectively. Let C
be the usual positively oriented contour consisting of the semi-circle of radius R around the
origin followed by the segment of the real axis from —R to R. For R > 3 we have

3i 13 T
dz=27i| ——— | = — .
/cf@ ¢ ’(50 200) 100
We need to confirm that the integral over the semicircle tends to 0 as R — oo, but since
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‘f(Z)‘ < m, this follows readily.
Thus,
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Since f is an even function, the integral from 0 to o is half of the above, as desired.
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3. Using a contour like the one at right with R sufficiently large,

® dx /4 Re*mi/3
show that/ 3 =—.
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As in the previous problems, we express the desired integral as Y Cr
part of a larger contour which surrounds a singular point, and R
write f(z) = 1/(z> +8). Here the relevant singularity is the pole 0 ﬁ' R
at z=2¢"/3 and
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(The other two poles are at —1 and z =2e¢ and lie outside of the contour.)

As in the figure, let Cg be the part of the positively oriented circle with 0 < argz < 2mi/3
and |z] =R with R > 2, and let 7y represent the angled leg of the sector, and 3 be the part along
the real axis. Take the contour C to be Cg followed by y followed by f3; the Cachy-Goursat
theorem gives
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Since | f(2)| < 8 !

5 for z € Cg, it is easy to see that hm / z)dz=0.

Observe that we can parameterize B as z =x with 0 § x<R,and —yasz — xe2™1/3 with
0 <x <R. Using this parameterization, we see that
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that is, /Bf(z)dz—i—/yf(z)dz: (1—e2’“'/3> /()Rf(x)dx.

Combining this with eq. (1) and taking the limit as R — o gives
T im (1—e2’”/3) /Rf(X)dx: (1—e2’”'/3> /oof(x)dx
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Hence
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4. Using residues, show that / C;) i dx=—.
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Let f(x) =1/(x>+1) and we integrate f(z) e over the contour C consisting of the segment
from —R to R along the real axis followed by the semicircle Cg of radius R in the upper
half-plane (with R > 1).

Since |f(z)] — 0 on Cg as R — oo, Jordan's Lemma tells us that I%im f(z)e*“dz =0, so
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and we can find the desired integral by taking the real part of both sides.

The residue at z =i of 72 /(z>+1) is just ¢ (i) where ¢(z) = >Z/(z+1), so we get —i/(2¢°).
Hence we have
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This is similar to the previous problem. _

Specifically, let f(x) =x3/((x* +1)(x*>+9)) and integrate f(z) e over the contour C con-
sisting of the segment from —R to R along the real axis followed by the semicircle Cg of radius
R in the upper half-plane (with R > 3).

The function f(z)e”® has simple poles at z = +i and z = 4:3i, and the two residues inside
the contour C are —1/(16e) and 9/(16e3), respectively.

As in the previous problem, |f(z)] — 0 on Cg as R — oo, and so Jordan's Lemma tells us
that lim / f(z)edz =0.
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5. Use residues to calculate / ( X .
0

Putting this all together gives
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Since f(x)sinx is an even function, we have
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