MAT342 Homework 10

Due Wednesday, April 24

- Let C be the positively oriented circle |z| = 2. Use residues to evaluate the integral of each of the following functions along C.
 (c) e^{-z}
 (c) z²e^{1/z}
 - (a) $\frac{e^{-z}}{z^2}$ (b) $\frac{e^{-z}}{(z-1)^2}$
- 2. Let $f(z) = \frac{4z^2 5}{z(z-1)(1+z^2)}$, and let C be the positively oriented circle |z| = 2. Compute $\int_{C} f(z) dz$. You can do this any number of ways, although I recommend calculating the residue at infinity.
- 3. Evaluate $\int_{C} \frac{dz}{z^3(z+4)}$ where C is the positively oriented circle given by (a) |z| = 2 (b) |z+2| = 3
- 4. Compute the residue at z = 0 for each of the following:

(a)
$$\frac{\sin z}{z^6}$$
 (b) $\frac{\cos z}{z^5}$ (c) e^{1/z^6} (d) $\frac{5z^3 - 4}{z(z-2)}$

5. Let C_N be the positively oriented boundary of the square joining the four points of the form $\pm (N + \frac{1}{2})\pi \pm i(N + \frac{1}{2})\pi$, with $N \in \mathbb{Z}^+$. Show that

$$\int_{\mathcal{C}_N} \frac{dz}{z^2 \sin z} = 2\pi i \left(\frac{1}{6} + 2\sum_{n=1}^N \frac{(-1)^n}{n^2 \pi^2} \right) \, .$$

One can show (but you don't have to — see §4.47 exercise 8) that $\left| \int_{\mathcal{C}_N} \frac{dz}{z^2 \sin z} \right| \le \frac{16}{(2N+1)\pi}$ and so the value of the integral over \mathcal{C}_N tends to zero as $N \to \infty$.

Using this result, conclude that $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} = 1 - \frac{1}{4} + \frac{1}{9} - \frac{1}{25} + \dots = \frac{\pi^2}{12}.$

- 6. Let C_R be the contour consisting of the segement of the real axis from -R to R, and C_O be the semi-circular arc of radius R going from R back to -R (in the upper half-plane); let C be the positively oriented contour consisting of C_R followed by C_O .
 - (a) Compute $\int_{\mathcal{C}} \frac{dz}{1+z^4}$ for R > 1 (the value of the integral is zero for R < 1).
 - (b) Observe that for $z \in C_0$, we know that $\frac{1}{R^4-1} \ge \left|\frac{1}{1+z^4}\right| \ge \frac{1}{R^4+1}$ (since $1+z^4$ is the distance in \mathbb{C} between z^4 and -1). Use this to conclude that

$$\lim_{R\to\infty}\int_{\mathcal{C}_O}\frac{dz}{1+z^4}=0$$

(c) Finally, combine the results of the previous two parts to calculate

$$\int_{-\infty}^{\infty} \frac{dx}{1+x^4} \quad \text{as} \quad \lim_{R \to \infty} \int_{\mathcal{C}_R} \frac{dz}{1+z^4} = \lim_{R \to \infty} \int_{\mathcal{C}} \frac{dz}{1+z^4}$$

(The first limit is a valid represention of the integral since $1/(1+x^4)$ is a nonzero, even function of *x*. If the function were not even, we would have to find the integral for x < 0 and x > 0 separately.)