MAT342 Homework 10

Due Wednesday, April 24

1. Let \mathcal{C} be the positively oriented circle $|z|=2$. Use residues to evaluate the integral of each of the following functions along \mathcal{C}.
(a) $\frac{e^{-z}}{z^{2}}$
(b) $\frac{e^{-z}}{(z-1)^{2}}$
(c) $z^{2} e^{1 / z}$
2. Let $f(z)=\frac{4 z^{2}-5}{z(z-1)\left(1+z^{2}\right)}$, and let \mathcal{C} be the positively oriented circle $|z|=2$. Compute $\int_{\mathcal{C}} f(z) d z$. You can do this any number of ways, although I recommend calculating the residue at infinity.
3. Evaluate $\int_{\mathcal{C}} \frac{d z}{z^{3}(z+4)}$ where \mathcal{C} is the positively oriented circle given by
(a) $|z|=2$
(b) $|z+2|=3$
4. Compute the residue at $z=0$ for each of the following:
(a) $\frac{\sin z}{z^{6}}$
(b) $\frac{\cos z}{z^{5}}$
(c) $e^{1 / z^{6}}$
(d) $\frac{5 z^{3}-4}{z(z-2)}$
5. Let \mathcal{C}_{N} be the positively oriented boundary of the square joining the four points of the form $\pm\left(N+\frac{1}{2}\right) \pi \pm i\left(N+\frac{1}{2}\right) \pi$, with $N \in \mathbb{Z}^{+}$. Show that

$$
\int_{\mathcal{C}_{N}} \frac{d z}{z^{2} \sin z}=2 \pi i\left(\frac{1}{6}+2 \sum_{n=1}^{N} \frac{(-1)^{n}}{n^{2} \pi^{2}}\right)
$$

One can show (but you don't have to - see $\S 4.47$ exercise 8) that $\left|\int_{\mathcal{C}_{N}} \frac{d z}{z^{2} \sin z}\right| \leq \frac{16}{(2 N+1) \pi}$ and so the value of the integral over \mathcal{C}_{N} tends to zero as $N \rightarrow \infty$.
Using this result, conclude that $\quad \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}}=1-\frac{1}{4}+\frac{1}{9}-\frac{1}{25}+\ldots=\frac{\pi^{2}}{12}$.
6. Let \mathcal{C}_{R} be the contour consisting of the segement of the real axis from $-R$ to R, and \mathcal{C}_{O} be the semi-circular arc of radius R going from R back to $-R$ (in the upper half-plane); let \mathcal{C} be the positively oriented contour consisting of \mathcal{C}_{R} followed by \mathcal{C}_{O}.
(a) Compute $\int_{\mathcal{C}} \frac{d z}{1+z^{4}}$ for $R>1 \quad$ (the value of the integral is zero for $R<1$).
(b) Observe that for $z \in \mathcal{C}_{O}$, we know that $\frac{1}{R^{4}-1} \geq\left|\frac{1}{1+z^{4}}\right| \geq \frac{1}{R^{4}+1}$ (since $1+z^{4}$ is the distance in \mathbb{C} between z^{4} and -1$)$. Use this to conclude that

$$
\lim _{R \rightarrow \infty} \int_{\mathcal{C}_{O}} \frac{d z}{1+z^{4}}=0
$$

(c) Finally, combine the results of the previous two parts to calculate

$$
\int_{-\infty}^{\infty} \frac{d x}{1+x^{4}} \quad \text { as } \quad \lim _{R \rightarrow \infty} \int_{\mathcal{C}_{R}} \frac{d z}{1+z^{4}}=\lim _{R \rightarrow \infty} \int_{\mathcal{C}} \frac{d z}{1+z^{4}}
$$

(The first limit is a valid represention of the integral since $1 /\left(1+x^{4}\right)$ is a nonzero, even function of x. If the function were not even, we would have to find the integral for $x<0$ and $x>0$ separately.)

