MAT342 Homework 10
Due Wednesday, April 24

. Let C be the positively oriented circle |z| = 2. Use residues to evaluate the integral of each of
the following functions along C.
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. Let f(z) = 5+» and let C be the positively oriented circle |z| =2. Compute / f(z)dz.
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You can do this any number of ways, although I recommend calculating the residue at infinity.
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. Evaluate / 3—Z where C is the positively oriented circle given by
c(z+4)
(a) |z| =2 (b) |z+2] =3

. Compute the residue at z = 0 for each of the following:
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. Let Cy be the positively oriented boundary of the square joining the four points of the form
+(N+5)m £ i(N+3)7, with N € Z*. Show that
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One can show (but you don’t have to — see §4.47 exercise 8) that / 5 Z <
: oy 2?sinz| — 2N+ 1)m
and so the value of the integral over Cy tends to zero as N — oo.
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. Let Cr be the contour consisting of the segement of the real axis from —R to R, and Cp be the
semi-circular arc of radius R going from R back to —R (in the upper half-plane); let C be the
positively oriented contour consisting of C followed by Cy.
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for R>1 (the value of the integral is zero for R < 1).

> —L_ (since 1+ z* is the distance

(b) Observe that for z € Cp, we know that —— > ’ L1> B
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in C between z* and —1). Use this to conclude that
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(c) Finally, combine the results of the previous two parts to calculate

/°° dx I / dz I / dz
as m = lim .
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(The first limit is a valid represention of the integral since 1/(1+x*) is a nonzero, even function of x.
If the function were not even, we would have to find the integral for x < 0 and x > 0 separately.)




