
MAT342 Homework 10 Solutions
Due Wednesday, April 24

1. Let C be the positively oriented circle |z| = 2. Use residues to evaluate the integral of each of
the following functions along C.

(a)
e−z

z2 = 2π i ·Res
z=0

e−z

z2 =−2π i

(b)
e−z

(z−1)2 = 2π i ·Res
z=1

e−z

(z−1)2 =
−2π i

e

(c) z2 e1/z = 2π i ·Res
z=0

z2 e1/z =
2π i

6
=

π i
6

2. Let f (z)=
4z2−5

z(z−1)(1+ z2)
, and let C be the positively oriented circle |z|= 2. Compute

∫
C

f (z)dz.

You can do this any number of ways, although I recommend calculating the residue at infinity.

f (z) has simple poles at z = 0, z = 1, z = i and z = −i, all of which are inside C. So, we
can calculate the integral as 2π i times the sum of the residues or as 2π i times the residue at
infinity. I’ll do both.

Res
z=∞

f (z) = Res
z=0

f (1/z)
z2 = Res

z=0

5z2−4
(z−1)(z2 +1)

= 0 .

Or, if you prefer,

Res
z=0

f (z) = Res
z=0

f (z)+Res
z=1

f (z)+Res
z=i

f (z)+ Res
z=−i

f (z)

=
−5
−1 ·1

+
4−5
1 ·2

+
−4−5

i · (i−1) · (i+ i)
+

−4−5
−i · (−i−1) · (−i− i)

= 5− 1
2 −

9
4(1+ i)− 9

4(1− i) = 0 .

If you are a masochist, you can parameterize C as θ 7→ 2eiθ and do the integral∫ 2π

0

16e2iθ

2eiθ (2eiθ −1)(4e2iθ +1)
· (2ieiθ )dθ ,

but that is just horrible and you get zero anyway.

3. Evaluate
∫
C

dz
z3(z+4)

where C is the positively oriented circle given by

(a) |z|= 2 C contains 0 but not −4, so we get 2π i Res
z=0

f (z) =
2π i
64

=
π i
32

.

(b) |z+2|= 3 C contains both −4 and 0. Since Res
z=−4

f (z) =− 1
64

, the integral gives 0.
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4. Compute the residue at z = 0 for each of the following:

(a)
sinz
z6 =

1
z5 −

1
6z3 +

1
120z

+O(z), so the residue is
1

120
.

(b)
cosz

z5 =
1
z5 −

1
2z3 +

1
24z

+O(z), so the residue is
1

24
.

(c) e1/z6
= 1+

1
z6 +O(z

−12), so the residue is 0 .

(d)
5z3−4
z(z−2)

The residue is
5 ·0−4
−2

= 2 .

5. Let CN be the positively oriented boundary of the square joining the four points of the form
±(N + 1

2)π ± i(N + 1
2)π , with N ∈ Z+. Show that∫

CN

dz
z2 sinz

= 2π i

(
1
6
+2

N

∑
n=1

(−1)n

n2π2

)
.

One can show (but you don’t have to — see §4.47 exercise 8) that
∣∣∣∣∫CN

dz
z2 sinz

∣∣∣∣≤ 16
(2N +1)π

and so the value of the integral over CN tends to zero as N→ ∞.

Using this result, conclude that
∞

∑
n=1

(−1)n+1

n2 = 1− 1
4
+

1
9
− 1

25
+ . . .=

π2

12
.

For notation, let f (z) = 1
z2 sinz . The pole at z = 0 is not simple, but the Laurent series gives

f (z) = 1
z3 +

1
6z +Oz, so the residue at z = 0 is 1

6 .

The remaining zeros of z2 sinz occur at ±nπ for n ∈ Z+, the corresponding poles are all
simple, and for n > 0

Res
z=±nπ

1
z2 sinz

=
(−1)n

(nπ)2 .

To see this, observe the for n odd the first term in the Taylor series for sinz near z = nπ is
−(z−nπ), but for n even the first term is (z−nπ). Thus we can write

1
z2 sinz

=
(−1)n/z2

(z−nπ)+O
(
(z−nπ)3

)
and conclude that the residue at z =±nπ is (−1)n/(nπ)2. Using this we have∫
CN

dz
z2 sinz

= 2π i

(
Res
z=0

f (z)+
N

∑
n=1

(
Res
z=nπ

f (z)+ Res
z=−nπ

f (z)
))

= 2π i

(
1
6
+2

N

∑
n=1

(−1)n

n2π2

)
.

Now, using

∣∣∣∣∫CN

dz
z2 sinz

∣∣∣∣ ≤ 16
(2N +1)π

(which follows from the fact that |sinz| ≥ 1 for z ∈

CN), we can see that lim
N→∞

∣∣∣∣∫CN

f (z)dz
∣∣∣∣= 0. Hence

0 =
∫
CN

dz
z2 sinz

= 2π i

(
1
6
+2

N

∑
n=1

(−1)n

n2π2

)
so − 1

6
= 2

N

∑
n=1

(−1)n

n2π2 .

Multiplying both sides by −π2

2 gives the result.
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6. Let CR be the contour consisting of the segement of the real axis from −R to R, and CO be the
semi-circular arc of radius R going from R back to −R (in the upper half-plane); let C be the
positively oriented contour consisting of CR followed by CO.

(a) Compute
∫
C

dz
1+ z4 for R > 1 (the value of the integral is zero for R < 1).

Note that f (z) = 1/(1+ z4) has poles at the fourth roots of −1. Let p+ = (1+ i)/
√

2
and p− = (1− i)/

√
2 be the two of these which lie inside the contour C. Then

∫
C

dz
1+ z4 = 2π i

(
Res
z=p+

f (z)+ Res
z=p−

f (z)
)
= 2π i

(
−1− i
4
√

2
+

1− i
4
√

2

)
=

π√
2
.

(b) Observe that for z ∈ CO, we know that 1
R4−1 ≥

∣∣∣ 1
1+z4

∣∣∣ ≥ 1
R4+1 (since 1+ z4 is the distance

in C between z4 and −1). Use this to conclude that

lim
R→∞

∫
CO

dz
1+ z4 = 0 .

As suggested, for z ∈ CO we have R4 + 1 ≤
∣∣1+ z4

∣∣ ≤ R4− 1 by interpreting
∣∣1+ z4

∣∣ as

the distance between z4 and −1 and observing that the image of CO under z 7→ z4 is the
circle of radius R4 (covered twice). (If you prefer, you can instead observe that the image
of CO under z 7→ 1+ z4 is the circle of radius R4 and center 1 to get the same result.)
Consequently, | f (z)| ≤ 1/(1+R4) for all z ∈ CO. Furthermore, the length of CO is π R.
Using the bound on the modulus of the integral (§4.47), we have∣∣∣∣∫CO

dz
1+ z4

∣∣∣∣≤ 1
1+R4 ·π R ,

which tends to 0 as R→ ∞.

(c) Finally, combine the results of the previous two parts to calculate∫
∞

−∞

dx
1+ x4 as lim

R→∞

∫
CR

dz
1+ z4 = lim

R→∞

∫
C

dz
1+ z4 .

(The first limit is a valid represention of the integral since 1/(1+x4) is a nonzero, even function of x.
If the function were not even, we would have to find the integral for x < 0 and x > 0 separately.)

Since
∫
C

dz
1+ z4 =

π√
2

for all R > 1, we have∫
∞

−∞

dx
1+ x4 = lim

R→∞

∫
CR

dz
1+ z4 +0 = lim

R→∞

∫
CR

dz
1+ z4 + lim

R→∞

∫
CO

dz
1+ z4 =

∫
C

dz
1+ z4 =

π√
2
.


