MAT342 Homework 10 Solutions

Due Wednesday, April 24

1. Let \mathcal{C} be the positively oriented circle $|z|=2$. Use residues to evaluate the integral of each of the following functions along \mathcal{C}.
(a) $\frac{e^{-z}}{z^{2}}=2 \pi i \cdot \operatorname{Res}_{z=0} \frac{e^{-z}}{z^{2}}=-2 \pi i$
(b) $\frac{e^{-z}}{(z-1)^{2}}=2 \pi i \cdot \operatorname{Res}_{z=1} \frac{e^{-z}}{(z-1)^{2}}=\frac{-2 \pi i}{e}$
(c) $z^{2} e^{1 / z}=2 \pi i \cdot \operatorname{Res}_{z=0}^{2} z^{1 / z}=\frac{2 \pi i}{6}=\frac{\pi i}{6}$
2. Let $f(z)=\frac{4 z^{2}-5}{z(z-1)\left(1+z^{2}\right)}$, and let \mathcal{C} be the positively oriented circle $|z|=2$. Compute $\int_{\mathcal{C}} f(z) d z$. You can do this any number of ways, although I recommend calculating the residue at infinity.
$f(z)$ has simple poles at $z=0, z=1, z=i$ and $z=-i$, all of which are inside \mathcal{C}. So, we can calculate the integral as $2 \pi i$ times the sum of the residues or as $2 \pi i$ times the residue at infinity. I'll do both.

$$
\operatorname{Res}_{z=\infty} f(z)=\operatorname{Res}_{z=0} \frac{f(1 / z)}{z^{2}}=\operatorname{Res}_{z=0} \frac{5 z^{2}-4}{(z-1)\left(z^{2}+1\right)}=0 .
$$

Or, if you prefer,

$$
\begin{aligned}
\underset{z=0}{\operatorname{Res} f(z)} & =\underset{z=0}{\operatorname{Res}} f(z)+\underset{z=1}{\operatorname{Res}} f(z)+\underset{z=i}{\operatorname{Res}} f(z)+\operatorname{Res}_{z=-i} f(z) \\
& =\frac{-5}{-1 \cdot 1}+\frac{4-5}{1 \cdot 2}+\frac{-4-5}{i \cdot(i-1) \cdot(i+i)}+\frac{-4-5}{-i \cdot(-i-1) \cdot(-i-i)} \\
& =5-\frac{1}{2}-\frac{9}{4}(1+i)-\frac{9}{4}(1-i)
\end{aligned}=0 .
$$

If you are a masochist, you can parameterize \mathcal{C} as $\theta \mapsto 2 e^{i \theta}$ and do the integral

$$
\int_{0}^{2 \pi} \frac{16 e^{2 i \theta}}{2 e^{i \theta}\left(2 e^{i \theta}-1\right)\left(4 e^{2 i \theta}+1\right)} \cdot\left(2 i e^{i \theta}\right) d \theta
$$

but that is just horrible and you get zero anyway.
3. Evaluate $\int_{\mathcal{C}} \frac{d z}{z^{3}(z+4)}$ where \mathcal{C} is the positively oriented circle given by
(a) $|z|=2 \quad \mathcal{C}$ contains 0 but not -4 , so we get $2 \pi i \underset{z=0}{\operatorname{Res}} f(z)=\frac{2 \pi i}{64}=\frac{\pi i}{32}$.
(b) $|z+2|=3 \quad \mathcal{C}$ contains both -4 and 0 . Since $\underset{z=-4}{\operatorname{Res}} f(z)=-\frac{1}{64}$, the integral gives 0 .
4. Compute the residue at $z=0$ for each of the following:
(a) $\frac{\sin z}{z^{6}}=\frac{1}{z^{5}}-\frac{1}{6 z^{3}}+\frac{1}{120 z}+\mathcal{O}(z)$, so the residue is $\frac{1}{120}$.
(b) $\frac{\cos z}{z^{5}}=\frac{1}{z^{5}}-\frac{1}{2 z^{3}}+\frac{1}{24 z}+\mathcal{O}(z)$, so the residue is $\frac{1}{24}$.
(c) $e^{1 / z^{6}}=1+\frac{1}{z^{6}}+\mathcal{O}\left(z^{-12}\right)$, so the residue is 0 .
(d) $\frac{5 z^{3}-4}{z(z-2)}$ The residue is $\frac{5 \cdot 0-4}{-2}=2$.
5. Let \mathcal{C}_{N} be the positively oriented boundary of the square joining the four points of the form $\pm\left(N+\frac{1}{2}\right) \pi \pm i\left(N+\frac{1}{2}\right) \pi$, with $N \in \mathbb{Z}^{+}$. Show that

$$
\int_{\mathcal{C}_{N}} \frac{d z}{z^{2} \sin z}=2 \pi i\left(\frac{1}{6}+2 \sum_{n=1}^{N} \frac{(-1)^{n}}{n^{2} \pi^{2}}\right)
$$

One can show (but you don’t have to - see $\S 4.47$ exercise 8) that $\left|\int_{\mathcal{C}_{N}} \frac{d z}{z^{2} \sin z}\right| \leq \frac{16}{(2 N+1) \pi}$ and so the value of the integral over \mathcal{C}_{N} tends to zero as $N \rightarrow \infty$.
Using this result, conclude that $\quad \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}}=1-\frac{1}{4}+\frac{1}{9}-\frac{1}{25}+\ldots=\frac{\pi^{2}}{12}$.
For notation, let $f(z)=\frac{1}{z^{2} \sin z}$. The pole at $z=0$ is not simple, but the Laurent series gives $f(z)=\frac{1}{z^{3}}+\frac{1}{6 z}+\mathcal{O} z$, so the residue at $z=0$ is $\frac{1}{6}$.

The remaining zeros of $z^{2} \sin z$ occur at $\pm n \pi$ for $n \in \mathbb{Z}^{+}$, the corresponding poles are all simple, and for $n>0$

$$
\operatorname{Res}_{z= \pm n \pi} \frac{1}{z^{2} \sin z}=\frac{(-1)^{n}}{(n \pi)^{2}}
$$

To see this, observe the for n odd the first term in the Taylor series for $\sin z$ near $z=n \pi$ is $-(z-n \pi)$, but for n even the first term is $(z-n \pi)$. Thus we can write

$$
\frac{1}{z^{2} \sin z}=\frac{(-1)^{n} / z^{2}}{(z-n \pi)+\mathcal{O}\left((z-n \pi)^{3}\right)}
$$

and conclude that the residue at $z= \pm n \pi$ is $(-1)^{n} /(n \pi)^{2}$. Using this we have
$\int_{\mathcal{C}_{N}} \frac{d z}{z^{2} \sin z}=2 \pi i\left(\operatorname{Res}_{z=0} f(z)+\sum_{n=1}^{N}\left(\underset{z=n \pi}{\operatorname{Res}} f(z)+\operatorname{Res}_{z=-n \pi} f(z)\right)\right)=2 \pi i\left(\frac{1}{6}+2 \sum_{n=1}^{N} \frac{(-1)^{n}}{n^{2} \pi^{2}}\right)$.
Now, using $\left|\int_{\mathcal{C}_{N}} \frac{d z}{z^{2} \sin z}\right| \leq \frac{16}{(2 N+1) \pi}$ (which follows from the fact that $|\sin z| \geq 1$ for $z \in$ \mathcal{C}_{N}), we can see that $\lim _{N \rightarrow \infty}\left|\int_{\mathcal{C}_{N}} f(z) d z\right|=0$. Hence

$$
0=\int_{\mathcal{C}_{N}} \frac{d z}{z^{2} \sin z}=2 \pi i\left(\frac{1}{6}+2 \sum_{n=1}^{N} \frac{(-1)^{n}}{n^{2} \pi^{2}}\right) \quad \text { so } \quad-\frac{1}{6}=2 \sum_{n=1}^{N} \frac{(-1)^{n}}{n^{2} \pi^{2}}
$$

Multiplying both sides by $-\frac{\pi^{2}}{2}$ gives the result.
6. Let \mathcal{C}_{R} be the contour consisting of the segement of the real axis from $-R$ to R, and \mathcal{C}_{O} be the semi-circular arc of radius R going from R back to $-R$ (in the upper half-plane); let \mathcal{C} be the positively oriented contour consisting of \mathcal{C}_{R} followed by \mathcal{C}_{O}.
(a) Compute $\int_{\mathcal{C}} \frac{d z}{1+z^{4}}$ for $R>1 \quad$ (the value of the integral is zero for $R<1$).

Note that $f(z)=1 /\left(1+z^{4}\right)$ has poles at the fourth roots of -1 . Let $p_{+}=(1+i) / \sqrt{2}$ and $p_{-}=(1-i) / \sqrt{2}$ be the two of these which lie inside the contour \mathcal{C}. Then

$$
\int_{\mathcal{C}} \frac{d z}{1+z^{4}}=2 \pi i\left(\operatorname{Res}_{z=p_{+}} f(z)+\operatorname{Res}_{z=p_{-}} f(z)\right)=2 \pi i\left(\frac{-1-i}{4 \sqrt{2}}+\frac{1-i}{4 \sqrt{2}}\right)=\frac{\pi}{\sqrt{2}} .
$$

(b) Observe that for $z \in \mathcal{C}_{O}$, we know that $\frac{1}{R^{4}-1} \geq\left|\frac{1}{1+z^{4}}\right| \geq \frac{1}{R^{4}+1}$ (since $1+z^{4}$ is the distance in \mathbb{C} between z^{4} and -1$)$. Use this to conclude that

$$
\lim _{R \rightarrow \infty} \int_{\mathcal{C}_{O}} \frac{d z}{1+z^{4}}=0
$$

As suggested, for $z \in \mathcal{C}_{O}$ we have $R^{4}+1 \leq\left|1+z^{4}\right| \leq R^{4}-1$ by interpreting $\left|1+z^{4}\right|$ as the distance between z^{4} and -1 and observing that the image of \mathcal{C}_{O} under $z \mapsto z^{4}$ is the circle of radius R^{4} (covered twice). (If you prefer, you can instead observe that the image of \mathcal{C}_{O} under $z \mapsto 1+z^{4}$ is the circle of radius R^{4} and center 1 to get the same result.) Consequently, $|f(z)| \leq 1 /\left(1+R^{4}\right)$ for all $z \in \mathcal{C}_{O}$. Furthermore, the length of \mathcal{C}_{O} is πR. Using the bound on the modulus of the integral (§4.47), we have

$$
\left|\int_{\mathcal{C}_{O}} \frac{d z}{1+z^{4}}\right| \leq \frac{1}{1+R^{4}} \cdot \pi R
$$

which tends to 0 as $R \rightarrow \infty$.
(c) Finally, combine the results of the previous two parts to calculate

$$
\int_{-\infty}^{\infty} \frac{d x}{1+x^{4}} \quad \text { as } \quad \lim _{R \rightarrow \infty} \int_{\mathcal{C}_{R}} \frac{d z}{1+z^{4}}=\lim _{R \rightarrow \infty} \int_{\mathcal{C}} \frac{d z}{1+z^{4}} .
$$

(The first limit is a valid represention of the integral since $1 /\left(1+x^{4}\right)$ is a nonzero, even function of x. If the function were not even, we would have to find the integral for $x<0$ and $x>0$ separately.)
Since $\int_{\mathcal{C}} \frac{d z}{1+z^{4}}=\frac{\pi}{\sqrt{2}}$ for all $R>1$, we have

$$
\int_{-\infty}^{\infty} \frac{d x}{1+x^{4}}=\lim _{R \rightarrow \infty} \int_{\mathcal{C}_{R}} \frac{d z}{1+z^{4}}+0=\lim _{R \rightarrow \infty} \int_{\mathcal{C}_{R}} \frac{d z}{1+z^{4}}+\lim _{R \rightarrow \infty} \int_{\mathcal{C}_{O}} \frac{d z}{1+z^{4}}=\int_{\mathcal{C}} \frac{d z}{1+z^{4}}=\frac{\pi}{\sqrt{2}}
$$

