MAT342 Homework 9

Due Wednesday, April 17

1. Give two Laurent series expansions (of the form $\sum_{n=-\infty}^{\infty} c_{n} z^{n}$) for $f(z)=\frac{1}{z^{3}\left(1-z^{2}\right)}$ and state the regions on which the expansions are valid. (Hint: I find it useful to write f as a sum of fractions.)
2. By examining the Maclaurin series for $\frac{1-\cos z}{z^{2}}$, show that the function

$$
f(z)= \begin{cases}\frac{1-\cos z}{z^{2}} & \text { for } z \neq 0 \\ \frac{1}{2} & \text { for } z=0\end{cases}
$$

is entire.
3. (a) The Taylor series for $\frac{1}{w}$ about the point $w=1$ is given by

$$
\frac{1}{w}=\sum_{n=0}^{\infty}(-1)^{n}(w-1)^{n} \quad \text { for }|w-1|<1
$$

which can easily be seen by substituting $1-z=w$ into the geometric series. Integrate the above series along a contour lying inside the disk of convergence from $w=1$ to $w=z$ and obtain the series for the principal value of the logarithm

$$
\log z=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(z-1)^{n}}{n} \quad \text { for }|z-1|<1
$$

(b) Using the previous part, show that the function

$$
f(z)= \begin{cases}\frac{\log z}{z-1} & \text { for } z \neq 1 \\ 1 & \text { for } z=1\end{cases}
$$

is analytic throughout the slit plane $z \neq 0,-\pi<\operatorname{Arg} z<\pi$.
4. Multiply the Maclaurin series for e^{z} and $\frac{1}{1+z}$ to obtain the series expansion for $\frac{e^{z}}{1+z}$ up to z^{5}. On what disk does it converge?
5. Use division of power series to obtain the first three nonzero terms of the Laurent series for $\frac{1}{\sinh z}$ valid for $0<|z|<\pi$.

