MAT342 Homework 9 Solutions

Due Wednesday, April 17

1. Give two Laurent series expansions (of the form $\sum_{n=-\infty}^{\infty} c_{n} z^{n}$) for $f(z)=\frac{1}{z^{3}\left(1-z^{2}\right)}$ and state the regions on which the expansions are valid. (Hint: I find it useful to write f as a sum of fractions.)
As suggested, write $f(z)=\frac{1}{z^{3}}+\frac{1}{z}-\frac{z}{1-z^{2}}$. Observe that the terms $\frac{1}{z^{3}}$ and $\frac{1}{z}$ are analytic for $z \neq 0$, while $\frac{z}{1-z^{2}}$ has singlarities at ± 1.

From the expansion for a geometric series, we obtain

$$
\frac{z}{1-z^{2}}=z \sum_{n=0}^{\infty}\left(z^{2}\right)^{n}=\sum_{n=0}^{\infty} z^{2 n+1} \quad \text { for }|z|<1
$$

and so

$$
f(z)=\frac{1}{z^{3}}+\frac{1}{z}-\sum_{n=0}^{\infty} z^{2 n+1}=\frac{1}{z^{3}}+\frac{1}{z}-z-z^{3}-z^{5}-\ldots \quad \text { for } 0<|z|<1
$$

If $|z|>1$, then the we can express $\frac{z}{1-z^{2}}$ as a geometric series in $\frac{1}{z}$. That is,

$$
\frac{z}{1-z^{2}}=\frac{1 / z}{1 / z^{2}-1}=-\frac{1}{z} \sum_{n=0}^{\infty}\left(\frac{1}{z^{2}}\right)^{n}=-\sum_{n=0}^{\infty} \frac{1}{z^{2 n+1}}=-\frac{1}{z}-\frac{1}{z^{3}}-\frac{1}{z^{5}}-\ldots \quad \text { for } 1<|z|
$$

Consequently,

$$
f(z)=\frac{1}{z^{3}}+\frac{1}{z}+\sum_{n=0}^{\infty} \frac{1}{z^{2 n+1}}=\frac{2}{z}+\frac{2}{z^{3}}+\sum_{n=2}^{\infty} \frac{1}{z^{2 n+1}}=\frac{2}{z}+\frac{2}{z^{3}}+\frac{1}{z^{5}}+\frac{1}{z^{7}}+\ldots \quad \text { for } 1<|z| .
$$

2. By examining the Maclaurin series for $\frac{1-\cos z}{z^{2}}$, show that the function

$$
f(z)= \begin{cases}\frac{1-\cos z}{z^{2}} & \text { for } z \neq 0 \\ \frac{1}{2} & \text { for } z=0\end{cases}
$$

is entire.
Writing the series for $\frac{1-\cos z}{z^{2}}$, we have

$$
\frac{1}{z^{2}}\left(1-\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n}}{(2 n)!}\right)=\frac{1}{z^{2}} \cdot \sum_{n=1}^{\infty}(-1)^{n+1} \frac{z^{2 n}}{(2 n)!}=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{z^{2 n-2}}{(2 n)!}=\frac{1}{2}-\frac{z^{2}}{4!}+\ldots
$$

Since for $z \neq 0, f(z)=\frac{1-\cos z}{z^{2}}$ is analytic and agrees with the series expansion. But the series is convergent for all z and takes on the value $1 / 2=f(0)$ at $z=0$. Hence the singularity of $\frac{1-\cos z}{z^{2}}$ is removable, and f is an entire function.
3. (a) The Taylor series for $\frac{1}{w}$ about the point $w=1$ is given by

$$
\frac{1}{w}=\sum_{n=0}^{\infty}(-1)^{n}(w-1)^{n} \quad \text { for }|w-1|<1,
$$

which can easily be seen by substituting $1-z=w$ into the geometric series. Integrate the above series along a contour lying inside the disk of convergence from $w=1$ to $w=z$ and obtain the series for the principal value of the logarithm

$$
\log z=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(z-1)^{n}}{n} \quad \text { for }|z-1|<1
$$

Let γ be any contour lying in the disk $\{w||w-1|<1\}$ with $\gamma 0=1$ and $\gamma 1=z$. Since $1 / w$ is analytic in this disk, it has an antiderivative $\log w$ and so

$$
\int_{\gamma} \frac{d w}{w}=\log z-\log 1=\log z
$$

Since the series converges in the disk, we can integrate term-by-term to obtain
$\log z=\int_{\gamma} \frac{d w}{w}=\int_{\gamma} \sum_{n=0}^{\infty}(-1)^{n}(w-1)^{n} d w=\left.\sum_{n=0}^{\infty} \frac{(-1)^{n}(w-1)^{n+1}}{n+1}\right|_{1} ^{z}=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(z-1)^{n}}{n}$,
reindexing the series after evaluating the integral.
(b) Using the previous part, show that the function

$$
f(z)= \begin{cases}\frac{\log z}{z-1} & \text { for } z \neq 1 \\ 1 & \text { for } z=1\end{cases}
$$

is analytic throughout the slit plane $z \neq 0,-\pi<\operatorname{Arg} z<\pi$.
Dividing the series in the previous part by $z-1$, we get the series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(z-1)^{n-1}}{n}=1-\frac{z-1}{2}+\ldots
$$

which converges in the disk $|z-1|<1$. As in the previous problem, this means the singularity of $\log z /(z-1)$ at $z=1$ is removable, so $f(z)$ is analytic throughout the disk.

Note, however, the function $\log z$ is analytic in the slit plane $\{z \mid z \neq 0$ and $-\pi<\operatorname{Arg} z<\pi\}$, and $z-1 \neq 0$ for $z \neq 1$. Hence $f(z)=\log z /(z-1)$ is analytic outside the disk as well (except on the slit), even though the given series representation does not converge there. Thus $f(z)$ is analytic everywhere except on the negative real axis or zero.

If you like, you could describe this in terms of integrals on arbitrary contours around $z=1$ that avoid the negative real axis. It is effectively the same thing.
4. Multiply the Maclaurin series for e^{z} and $\frac{1}{1+z}$ to obtain the series expansion for $\frac{e^{z}}{1+z}$ up to z^{5}. On what disk does it converge?

$$
\begin{aligned}
e^{z} \cdot \frac{1}{1+z}= & \left(1+z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\frac{z^{4}}{4!}+\frac{z^{5}}{5!}+\mathcal{O}\left(z^{6}\right)\right)\left(1-z+z^{2}-z^{3}+z^{4}-z^{5}+\mathcal{O}\left(z^{6}\right)\right) \\
= & 1+(-1+1) z+\left(1-1+\frac{1}{2!}\right) z^{2}+\left(-1+1-\frac{1}{3!}+\frac{1}{4!}\right) z^{3}+\left(1-1+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}\right) z^{4} \\
& +\left(-1+1-\frac{1}{2!}+\frac{1}{3!}-\frac{1}{4!}+\frac{1}{5!}\right) z^{5}+\mathcal{O}\left(z^{6}\right) \\
= & 1+\frac{z^{2}}{2}-\frac{z^{3}}{3}+\frac{3 z^{4}}{8}-\frac{11 z^{5}}{30}+O\left(z^{6}\right)
\end{aligned}
$$

Since e^{z} is entire and the series for $\frac{1}{1+z}$ converges for $|z|<1$, the resulting series converges on the disk $|z|<1$.
5. Use division of power series to obtain the first three nonzero terms of the Laurent series for $\frac{1}{\sinh z}$ valid for $0<|z|<\pi$.
Note that $\sinh (z)=z+\frac{z^{3}}{3!}+\frac{z^{5}}{5!}+\mathcal{O}\left(z^{7}\right)$. Doing long division, we have

$$
z+\frac{z^{3}}{6}+\frac{z^{5}}{120} \left\lvert\, \begin{aligned}
& \frac{1 / z-\frac{1}{6} z+\frac{7}{360} z^{3}+\mathcal{O}\left(z^{5}\right)}{1+\frac{z^{2}}{6}+\frac{z^{4}}{120}} \\
& \frac{-\frac{z^{2}}{6}-\frac{z^{4}}{120}}{} \\
& \frac{-\frac{z^{2}}{6}-\frac{z^{4}}{36}+\frac{z^{6}}{720}}{\frac{7}{360} z^{4}+\mathcal{O}\left(z^{6}\right)} \\
& \frac{\frac{7}{360} z^{4}+\mathcal{O}\left(z^{6}\right)}{\mathcal{O}\left(z^{6}\right)}
\end{aligned}\right.
$$

Note that we can stop the process at this stage since we only want the first three nonzero terms. Thus we have $\frac{1}{\sinh z}=\frac{1}{z}-\frac{z}{6}+\frac{7}{360} z^{3}+\mathcal{O}\left(z^{5}\right)$.

The three zeros of $\sinh z$ of smallest magnitude occur at $z=-i \pi, z=0$, and $z=i \pi$, so the above Laurent series is valid for $0<|z|<\pi$.

