MAT342 Homework 8

Due Wednesday, April 10

1. (a) Let f be continuous on a closed, bounded region R, and analytic on the interior of R. If f is not constant and nonzero throughout R, prove that $|f(z)|$ has a minimum value which occurs on the boundary of R and never in the interior.
Hint: apply the maximum principle to $g(z)=1 / f(z)$.
(b) Show that the condition $f(z) \neq 0$ is necessary in the previous part. That is, give an example of a nonconstant, analytic function $f(z)$ and a closed bounded region R where $|f(z)|$ has a minimum interior to R (which is smaller than at any point on the boundary).
Hint: the identity function $f(z)=z$ will work.
2. Let R be the rectangular region $0 \leq \operatorname{Re} z \leq 1$, and $0 \leq \operatorname{Im} z \leq \pi$. Determine the values z where the norm of the function e^{z} attains its maximum and minimum values.
3. Using the definition of the limit of a sequence, show that $\lim _{n \rightarrow \infty}\left(2 i+\frac{i^{n}}{n^{2}}\right)=2 i$.
4. Obtain the Maclaurin series $\quad z \cosh \left(z^{2}\right)=\sum_{n=0}^{\infty} \frac{z^{4 n+1}}{(2 n)!}$. For what z does it converge?
5. Using the fact that $e^{z}=e \cdot e^{z-1}$, obtain the Taylor series $e^{z}=e \cdot \sum_{n=0}^{\infty} \frac{(z-1)^{n}}{n!}$.
6. Let $f(z)=\frac{-1}{(z-1)(z-2)}=\frac{1}{z-1}-\frac{1}{z-2}$. Write the Laurent series for $f(z)$ when $1<|z|<2$. Hint: rewrite the first term of f in terms of $\frac{1}{1-1 / z}$ and the second using $\frac{1}{1-(z / 2)}$, then use geometric series.
