
MAT342 Homework 8 Solutions
Due Wednesday, April 10

1. (a) Let f be continuous on a closed, bounded region R, and analytic on the interior of R. If
f is not constant and nonzero throughout R, prove that | f (z)| has a minimum value which
occurs on the boundary of R and never in the interior.
Hint: apply the maximum principle to g(z) = 1/ f (z).

Since f (z) 6= 0 throughout R and f is analytic inside R, g(z) = 1/ f (z) is also analytic on
the interior of R. Hence, by the maximum principle, |g(z)| attains its maximum on the
boundary of R. But the maximum of |g| is a minumum of | f |, so | f | attains both its
maximum and minimum on the boundary of R, and all values on the interior of R must
be between these.

(b) Show that the condition f (z) 6= 0 is necessary in the previous part. That is, give an example
of a nonconstant, analytic function f (z) and a closed bounded region R where | f (z)| has a
minimum interior to R (which is smaller than at any point on the boundary).
Hint: the identity function f (z) = z will work.

Let R be the closed unit disk D = {z | |z| ≤ 1}, and consider f (z) = z. This function is
analytic throughout D, but | f (0)|= 0 and | f (z)|= 1 on the boundary of D.

2. Let R be the rectangular region 0 ≤ Rez ≤ 1, and 0 ≤ Imz ≤ π . Determine the values z where
the norm of the function ez attains its maximum and minimum values.

From the maximum principle and the previous problem, we know both the maximum and
minimum of |ez| occur on the boundary of R since f (z) = ez is never zero for any z. Writing
z = x+ i y = (x,y), we must consider |ez| for points of the form (x,0), (0,y), (1,y), and (x,π)
with 0≤ x≤ 1 and 0≤ y≤ π.

For z = x+0i, ex is an increasing function, so the minimum of 1 occurs at (0,0), and the
maximum of e occurs at (1,0). For z = 0+ iy, eiy is a point on the unit circle, so |ez| = 1
for all such z. Similarly, when z = 1+ iy, e1+iy is a point on the circle of radius e, so |ez|= e
throughout. Finally, for z = x+ iπ, ez =−ex, so |ez| attains its minimum value of 1 at z = π i,
and its maximim value of e at z = 1+π i.

In short, the minimum of |ez| on the rectangle R is 1, which occurs at every point on the
left boundary (where Rez = 0) and the maximum of |ez| is e and occurs on the right boundary
(where Rez = 1).

Of course, the easy way to do this is to realize that ez sends horizontal lines to rays through
the origin, and vertical lines to concentric circles, so the maximum of |ez| must occur at every
point on the entire vertical line of largest real part, and the minumum on the vertical line of
smallest real part.
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as desired.
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4. Obtain the Maclaurin series z cosh(z2) =
∞

∑
n=0
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. For what z does it converge?

Recall that coshw =
∞

∑
n=0

w2n

(2n)!
for all w ∈ C, and so (letting w = z2) we have
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Since coshz, z, and z2 are all entire functions, this series converges for all z ∈ C.

5. Using the fact that ez = e · ez−1, obtain the Taylor series ez = e ·
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and letting w = z−1, we have ez = e · ez−1 = e ·
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6. Let f (z) =
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=
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. Write the Laurent series for f (z) when 1 < |z|< 2.

Hint: rewrite the first term of f in terms of 1
1−1/z and the second using 1

1−(z/2) , then use geometric series.
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The series ∑
1
zn converges for |z|> 1, and the series ∑

zn

2n converges for |z|< 2, so their difference
converges for 1 < |z|< 2.


