MAT342 Homework 7

Due Wednesday, April 3

1. Let $f(z)=\frac{2 z}{z^{2}-1}=\frac{1}{z+1}+\frac{1}{z-1}$.
(a) Let \mathcal{C}_{5} be the contour consisting of the positively oriented circle of radius 1 centered at $z_{0}=5$, and compute $\int_{\mathcal{C}_{5}} f(z) d z$. Hint: it is easier to do this without parameterizing \mathcal{C}_{5}.
(b) Let \mathcal{C}_{1} be the contour consisting of the positively oriented circle of radius 1 centered at $z_{0}=1$, and compute $\int_{\mathcal{C}_{1}} f(z) d z$. Hint: again, don't parameterize \mathcal{C}_{1}.
(c) Let \mathcal{C} be the positively oriented circle of radius 3 centered at the origin. Compute $\int_{\mathcal{C}} f(z) d z$. Hint: Observe (without calculating) that the integral over the circle of radius 1 around $z_{0}=-1$ has same value as in (b), and use the result of (b).
2. (a) Let \mathcal{C} be any positively oriented simple closed contour, and let \mathcal{R} be the region enclosed by \mathcal{C}. Use Green's Theorem (from multivariable calculus, or see section 4.50 of the text) to show that the area of \mathcal{R} is given by

$$
\operatorname{Area}(\mathcal{R})=\frac{1}{2 i} \int_{\mathcal{C}} \bar{z} d z
$$

even though the function $f(z)$ is nowhere analytic.
(b) Give an example of a closed contour \mathcal{B} where $\frac{1}{2 i} \int_{\mathcal{B}} \bar{z} d z$ does not equal the area enclosed by \mathcal{B}. Hint: Find a closed contour \mathcal{B} which intersects itself once and the value of the integral is 0 .
3. Let \mathcal{C} be the circle $|z|=4$, oriented counterclockwise, and define $g(z)=\int_{\mathcal{C}} \frac{s^{3}+1}{s-z} d s$ for $|z| \neq 4$.
(a) Calculate $g(0)$.
(b) Calculate $g(2 i)$.
(c) Calculate $g(5)$.
4. Let \mathcal{C} be the circle $|z|=4$, oriented counterclockwise, and define $h(z)=\int_{\mathcal{C}} \frac{s^{3}+1}{(s-z)^{3}} d s$ for $|z| \neq 4$.
(a) Calculate $h(0)$.
(b) Calculate $h(2 i)$.
(c) Calculate $h(5)$.
5. Suppose f is analytic within and on a simple closed contour \mathcal{C}, and z_{0} is not on \mathcal{C}. Show that

$$
\int_{\mathcal{C}} \frac{f^{\prime}(z) d z}{z-z_{0}}=\int_{\mathcal{C}} \frac{f(z) d z}{\left(z-z_{0}\right)^{2}}
$$

6. Let f be an entire function with $|f(z)| \leq 2|z|$ for all $z \in \mathbb{C}$, and that $f(1)=1$. Find $f(z)$. Hint: Use Cauchy's inequality to show $f^{\prime \prime}(z)=0$. This, together with the observation that $f(0)=0$, should tell you $f(z)$.
