MAT342 Homework 7 Solutions

Due Wednesday, April 3

1. Let $f(z)=\frac{2 z}{z^{2}-1}=\frac{1}{z+1}+\frac{1}{z-1}$.
(a) Let \mathcal{C}_{5} be the contour consisting of the positively oriented circle of radius 1 centered at $z_{0}=5$, and compute $\int_{\mathcal{C}_{5}} f(z) d z . \quad$ Hint: it is easier to do this without parameterizing \mathcal{C}_{5}.

Since $f(z)$ is analytic on and inside \mathcal{C}_{5}, the integral is zero by the Cauchy-Goursat Theorem.
(b) Let \mathcal{C}_{1} be the contour consisting of the positively oriented circle of radius 1 centered at $z_{0}=1$, and compute $\int_{\mathcal{C}_{1}} f(z) d z$. Hint: again, don't parameterize \mathcal{C}_{1}.
Observe that $\quad \int_{\mathcal{C}_{1}} f(z) d z=\int_{\mathcal{C}_{1}} \frac{d z}{z+1}+\int_{\mathcal{C}_{1}} \frac{d z}{z-1}=0+2 \pi i=2 \pi i$.
The first integral is zero because $\frac{1}{z+1}$ is anaytic on and inside \mathcal{C}_{1}; the second has $\log z$ as an antiderivative on the complex plane slit from 1 to ∞ (and, after a change of variables, is an integral we've done many times already).
(c) Let \mathcal{C} be the positively oriented circle of radius 3 centered at the origin. Compute $\int_{\mathcal{C}} f(z) d z$. Hint: Observe (without calculating) that the integral over the circle of radius 1 around $z_{0}=-1$ has same value as in (b), and use the result of (b).

Let \mathcal{C}_{-1} denote the positively oriented circle of radius 1 around -1 , Since f is analytic on the region between \mathcal{C}_{3} and $\mathcal{C}_{1} \cup \mathcal{C}_{-1}$ (as well as on these contours), we have

$$
\int_{\mathcal{C}_{3}} f(z) d z=\int_{\mathcal{C}_{-1}} f(z) d z+\int_{\mathcal{C}_{-1}} f(z) d z=2 \pi i+2 \pi i=4 \pi i .
$$

2. (a) Let \mathcal{C} be any positively oriented simple closed contour, and let \mathcal{R} be the region enclosed by \mathcal{C}. Use Green's Theorem (from multivariable calculus, or see section 4.50 of the text) to show that the area of \mathcal{R} is given by

$$
\operatorname{Area}(\mathcal{R})=\frac{1}{2 i} \int_{\mathcal{C}} \bar{z} d z
$$

even though the function $f(z)$ is nowhere analytic.
Let \mathcal{U} be the interior of \mathcal{C}. Recall that for functions P and Q from \mathbb{R}^{2} to itself, Green's Theorem says that $\int_{\mathcal{C}} P d x+Q d y=\iint_{\mathcal{R}} \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} d x d y$. If $z=x+i y$ then $\bar{z}=x-i y$, so

$$
\begin{array}{rlr}
\int_{\mathcal{C}} \bar{z} d z=\int_{\mathcal{C}}(x-i y)(d x+i d y) & =\int_{\mathcal{C}}(x d x+y d y)+i \int_{\mathcal{C}}(-y d x+x d y) \\
& =\iint_{\mathcal{R}}(0+0) d x d y+i \iint_{\mathcal{R}}(1+1) d x d y & =2 i \iint_{\mathcal{R}} d x d y \\
& =2 i \operatorname{Area}(\mathcal{R})
\end{array}
$$

The result follows immediately.
(b) Give an example of a closed contour \mathcal{B} where $\frac{1}{2 i} \int_{\mathcal{B}} \bar{z} d z$ does not equal the area enclosed by \mathcal{B}. Hint: Find a closed contour \mathcal{B} which intersects itself once and the value of the integral is 0 .

Let \mathcal{C}_{0} be the positively oriented circle of radius 1 and center 0 , and let \mathcal{C}_{2} be the positively oriented circle of radius 1 and center 2 . Now let \mathcal{B} be the contour $\mathcal{C}_{0}-\mathcal{C}_{2}$, that is, the figure eight taken by starting at 1, going around the origin in a counter-clockwise way, then going around 2 clockwise. Since

$$
\int_{\mathcal{B}} \bar{z} d z=\int_{\mathcal{C}_{0}} \bar{z} d z+\int_{-\mathcal{C}_{2}} \bar{z} d z=\int_{\mathcal{C}_{0}} \bar{z} d z-\int_{\mathcal{C}_{2}} \bar{z} d z=\pi-\pi=0
$$

but the area inside \mathcal{B} is 2π, not $\frac{0}{2 i}$.
3. Let \mathcal{C} be the circle $|z|=4$, oriented counterclockwise, and define $g(z)=\int_{\mathcal{C}} \frac{s^{3}+1}{s-z} d s$ for $|z| \neq 4$. We use the Cauchy integral formula for the first two parts, so $g(z)=\int_{\mathcal{C}} f(s) /(s-z) d s$ with $f(s)=s^{3}+1$, which is entire, so if z is inside $\mathcal{C}, g(z)=2 \pi i f(z)$.
(a) Calculate $g(0)$. Since $f(0)=1, g(0)=2 \pi i$.
(b) Calculate $g(2 i)$. Since $f(2 i)=-8 i+1, g(0)=16 \pi+2 \pi i$.
(c) Calculate $g(5)$. Note that $f(s) /(s-5)$ is analytic for s inside \mathcal{C}, so $g(0)=0$.
4. Let \mathcal{C} be the circle $|z|=4$, oriented counterclockwise, and define $h(z)=\int_{\mathcal{C}} \frac{s^{3}+1}{(s-z)^{3}} d s$ for $|z| \neq 4$. We use the extension of the Cauchy integral formula for the first two parts, and $h(z)=$ $\int_{\mathcal{C}} f(s) /(s-z)^{3} d s$ with $f(s)=s^{3}+1$. Then for z inside $\mathcal{C}, h(z)=\pi i f^{\prime \prime}(z)=6 \pi i z$.
(a) Calculate $h(0)$. Since $f^{\prime \prime}(0)=0, h(0)=0$.
(b) Calculate $h(2 i)$. Since $f^{\prime \prime}(2 i)=12 i, h(2 i)=-12 \pi$.
(c) Calculate $h(5)$. Since $f(s) /(s-5)^{3}$ is analytic for s inside $\mathcal{C}, h(5)=0$.
5. Suppose f is analytic within and on a simple closed contour \mathcal{C}, and z_{0} is not on \mathcal{C}. Show that

$$
\int_{\mathcal{C}} \frac{f^{\prime}(z) d z}{z-z_{0}}=\int_{\mathcal{C}} \frac{f(z) d z}{\left(z-z_{0}\right)^{2}}
$$

Let $g(z)=f^{\prime}(z)$, and assume \mathcal{C} is positively oriented. Then g is also analytic in and on \mathcal{C}. If z_{0} is exterior to \mathcal{C}, then both integrals are zero (since both integrands are analytic on the interior of \mathcal{C}) and hence equal.
If z_{0} is inside \mathcal{C}, then by the extended Cauchy integral formula,

$$
\int_{\mathcal{C}} \frac{f^{\prime}(z) d z}{z-z_{0}}=\int_{\mathcal{C}} \frac{g(z) d z}{z-z_{0}}=2 \pi i g\left(z_{0}\right)=2 \pi i f^{\prime}\left(z_{0}\right)=\int_{\mathcal{C}} \frac{f(z) d z}{\left(z-z_{0}\right)^{2}}
$$

If \mathcal{C} were negatively oriented, apply the above argument to $-\mathcal{C}$ to get equality; then the original integrals are also equal since their negatives are equal.
6. Let f be an entire function with $|f(z)| \leq 2|z|$ for all $z \in \mathbb{C}$, and that $f(1)=1$. Find $f(z)$. Hint: Use Cauchy's inequality to show $f^{\prime \prime}(z)=0$. This, together with the observation that $f(0)=0$, should tell you $f(z)$.
Cauchy's inequality (p .170 of the text) says that if f is analytic in and on a circle of radius R centered at z_{0} and $|f(z)| \leq M$ on this circle, then $\left|f^{(n)}\left(z_{0}\right)\right| \leq \frac{n!M}{R^{n}}$. In our case $z_{0}=0$, and taking $n=2$ and $|z|=R$, we have

$$
\left|f^{\prime \prime}(0)\right| \leq \frac{2 \cdot 2 R}{R^{2}}=\frac{4}{R}
$$

Since f is entire, this holds for every positive R, and hence we have $\left|f^{\prime \prime}(0)\right| \leq \varepsilon$ for every $\varepsilon>0$, that is, $\left|f^{\prime \prime}(0)\right|=0$.

Since $f^{\prime \prime}(z)=0$, so $f^{\prime}(z)=a$ for some constant a, and hence $f(z)=a z+b$ for some b. But the assumption $|f(z)| \leq 2|z|$ tells us that $f(0)=0$ (since it holds for $z=0$), and consequently $b=0$. Since $f(1)=1$ we must have $a=1$, so $f(z)=z$.

