MAT342 Homework 7 Solutions

Due Wednesday, April 3

1. Let $f(z) = \frac{2z}{z^2 - 1} = \frac{1}{z + 1} + \frac{1}{z - 1}$.

(a) Let C_5 be the contour consisting of the positively oriented circle of radius 1 centered at $z_0 = 5$, and compute $\int_{C_5} f(z) dz$. Hint: it is easier to do this without parameterizing C_5 .

Since f(z) is analytic on and inside C_5 , the integral is zero by the Cauchy-Goursat Theorem.

(b) Let C_1 be the contour consisting of the positively oriented circle of radius 1 centered at $z_0 = 1$, and compute $\int_{C_1} f(z) dz$. Hint: again, don't parameterize C_1 .

Observe that $\int_{C_1} f(z) dz = \int_{C_1} \frac{dz}{z+1} + \int_{C_1} \frac{dz}{z-1} = 0 + 2\pi i = 2\pi i.$ The first integral is zero because $\frac{1}{z+1}$ is anaytic on and inside C_1 ; the second has $\log z$ as

The first integral is zero because $\frac{1}{z+1}$ is analytic on and inside C_1 ; the second has $\log z$ as an antiderivative on the complex plane slit from 1 to ∞ (and, after a change of variables, is an integral we've done many times already).

(c) Let C be the positively oriented circle of radius 3 centered at the origin. Compute $\int_{C} f(z) dz$. Hint: Observe (without calculating) that the integral over the circle of radius 1 around $z_0 = -1$ has same value as in (b), and use the result of (b).

Let C_{-1} denote the positively oriented circle of radius 1 around -1, Since f is analytic on the region between C_3 and $C_1 \cup C_{-1}$ (as well as on these contours), we have

$$\int_{\mathcal{C}_3} f(z) \, dz = \int_{\mathcal{C}_{-1}} f(z) \, dz + \int_{\mathcal{C}_{-1}} f(z) \, dz = 2\pi i + 2\pi i = 4\pi i \, .$$

2. (a) Let C be any positively oriented simple closed contour, and let \mathcal{R} be the region enclosed by C. Use Green's Theorem (from multivariable calculus, or see section 4.50 of the text) to show that the area of \mathcal{R} is given by

$$\operatorname{Area}(\mathcal{R}) = \frac{1}{2i} \int_{\mathcal{C}} \overline{z} \, dz$$

even though the function f(z) is nowhere analytic.

Let \mathcal{U} be the interior of \mathcal{C} . Recall that for functions P and Q from \mathbb{R}^2 to itself, Green's Theorem says that $\int_{\mathcal{C}} P dx + Q dy = \iint_{\mathcal{R}} \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} dx dy$. If z = x + iy then $\overline{z} = x - iy$, so

$$\begin{aligned} \int_{\mathcal{C}} \bar{z} dz &= \int_{\mathcal{C}} (x - iy)(dx + idy) = \int_{\mathcal{C}} (x dx + y dy) + i \int_{\mathcal{C}} (-y dx + x dy) \\ &= \iint_{\mathcal{R}} (0 + 0) dx dy + i \iint_{\mathcal{R}} (1 + 1) dx dy \qquad = 2i \iint_{\mathcal{R}} dx dy \\ &= 2i \operatorname{Area}(\mathcal{R}). \end{aligned}$$

The result follows immediately.

(b) Give an example of a closed contour \mathcal{B} where $\frac{1}{2i} \int_{\mathcal{B}} \overline{z} \, dz$ does *not* equal the area enclosed by \mathcal{B} . Hint: Find a closed contour \mathcal{B} which intersects itself once and the value of the integral is 0.

Let C_0 be the positively oriented circle of radius 1 and center 0, and let C_2 be the positively oriented circle of radius 1 and center 2. Now let \mathcal{B} be the contour $C_0 - C_2$, that is, the figure eight taken by starting at 1, going around the origin in a counter-clockwise way, then going around 2 clockwise. Since

$$\int_{\mathcal{B}} \overline{z} dz = \int_{\mathcal{C}_0} \overline{z} dz + \int_{-\mathcal{C}_2} \overline{z} dz = \int_{\mathcal{C}_0} \overline{z} dz - \int_{\mathcal{C}_2} \overline{z} dz = \pi - \pi = 0$$

but the area inside \mathcal{B} is 2π , not $\frac{0}{2i}$.

3. Let C be the circle |z| = 4, oriented counterclockwise, and define $g(z) = \int_{\mathcal{C}} \frac{s^3 + 1}{s - z} ds$ for $|z| \neq 4$.

We use the Cauchy integral formula for the first two parts, so $g(z) = \int_{\mathcal{C}} f(s)/(s-z) ds$ with $f(s) = s^3 + 1$, which is entire, so if z is inside C, $g(z) = 2\pi i f(z)$.

- (a) Calculate g(0). Since f(0) = 1, $g(0) = 2\pi i$.
- (b) Calculate g(2i). Since f(2i) = -8i + 1, $g(0) = 16\pi + 2\pi i$.
- (c) Calculate g(5). Note that f(s)/(s-5) is analytic for s inside C, so g(0) = 0.

4. Let C be the circle |z| = 4, oriented counterclockwise, and define $h(z) = \int_{\mathcal{C}} \frac{s^3 + 1}{(s-z)^3} ds$ for $|z| \neq 4$.

We use the extension of the Cauchy integral formula for the first two parts, and $h(z) = \int_{\mathcal{C}} f(s)/(s-z)^3 ds$ with $f(s) = s^3 + 1$. Then for z inside C, $h(z) = \pi i f''(z) = 6\pi i z$.

- (a) Calculate h(0). Since f''(0) = 0, h(0) = 0.
- (b) Calculate h(2i). Since f''(2i) = 12i, $h(2i) = -12\pi$.
- (c) Calculate h(5). Since $f(s)/(s-5)^3$ is analytic for s inside C, h(5) = 0.
- 5. Suppose f is analytic within and on a simple closed contour C, and z_0 is not on C. Show that

$$\int_{\mathcal{C}} \frac{f'(z)dz}{z-z_0} = \int_{\mathcal{C}} \frac{f(z)dz}{(z-z_0)^2}$$

Let g(z) = f'(z), and assume C is positively oriented. Then g is also analytic in and on C. If z_0 is exterior to C, then both integrals are zero (since both integrands are analytic on the interior of C) and hence equal.

If z_0 is inside C, then by the extended Cauchy integral formula,

$$\int_{\mathcal{C}} \frac{f'(z) dz}{z - z_0} = \int_{\mathcal{C}} \frac{g(z) dz}{z - z_0} = 2\pi i g(z_0) = 2\pi i f'(z_0) = \int_{\mathcal{C}} \frac{f(z) dz}{(z - z_0)^2} \, .$$

If C were negatively oriented, apply the above argument to -C to get equality; then the original integrals are also equal since their negatives are equal.

6. Let f be an entire function with $|f(z)| \le 2|z|$ for all $z \in \mathbb{C}$, and that f(1) = 1. Find f(z). Hint: Use Cauchy's inequality to show f''(z) = 0. This, together with the observation that f(0) = 0, should tell you f(z).

Cauchy's inequality (p. 170 of the text) says that if f is analytic in and on a circle of radius R centered at z_0 and $|f(z)| \le M$ on this circle, then $\left|f^{(n)}(z_0)\right| \le \frac{n!M}{R^n}$. In our case $z_0 = 0$, and taking n = 2 and |z| = R, we have

$$\left|f''(0)\right| \le \frac{2 \cdot 2R}{R^2} = \frac{4}{R}.$$

Since f is entire, this holds for *every* positive R, and hence we have $|f''(0)| \le \varepsilon$ for every $\varepsilon > 0$, that is, |f''(0)| = 0.

Since f''(z) = 0, so f'(z) = a for some constant a, and hence f(z) = az + b for some b. But the assumption $|f(z)| \le 2|z|$ tells us that f(0) = 0 (since it holds for z = 0), and consequently b = 0. Since f(1) = 1 we must have a = 1, so f(z) = z.