MAT342 Homework 6

Due Friday, March 15

1. Let $\beta(t)=2+e^{i t}$ for $-\pi \leq t \leq 0$, and evaluate $\int_{\beta}(z-2)^{3} d z$.
2. Let γ be the boundary of the rectangle with vertices at the points $1,1+2 i,-1+2 i$, and -1 , oriented in the counterclockwise direction around the origin. Evaluate $\int_{\gamma} e^{i \bar{z}} d z$.
3. Let γ be the arc of the circle $|z|=2$ from $z=2$ to $z=2 i$ lying in the first quadrant. Without evaluating the integral, show that

$$
\left|\int_{\gamma} \frac{z+4}{z^{3}-1} d z\right| \leq \frac{6 \pi}{7}
$$

4. (a) Let $f_{1}(z)$ be the branch of $z^{1 / 2}$ given by

$$
f_{1}\left(r e^{i \theta}\right)=\sqrt{r} e^{i \theta / 2} \quad \text { with } r>0, \quad-\frac{\pi}{2}<\theta<\frac{3 \pi}{2}
$$

and let γ be any contour lying in the upper half-plane (that is, with $\operatorname{Im} \gamma(t)>0$ except at the endpoints of γ) which goes from 4 to -4 . Use an antiderivative of f_{1} to compute $\int_{\gamma} z^{1 / 2} d z$.
(b) Now let $f_{2}(z)$ be the branch of $z^{1 / 2}$ given by

$$
f_{2}\left(r e^{i \theta}\right)=\sqrt{r} e^{i \theta / 2} \quad \text { with } r>0, \quad \frac{\pi}{2}<\theta<\frac{5 \pi}{2}
$$

and let β be any contour lying in the lower half-plane which goes from 4 to -4 . Compute $\int_{\beta} z^{1 / 2} d z$ using an antiderivative of f_{2}.
(c) Observe that $f_{1}(z)=f_{2}(z)$ for z in a neighborhood of -4 . Use the results of parts (a) and (b) to calculate

$$
\int_{\mathcal{C}} z^{1 / 2} d z
$$

where $\mathcal{C}=\gamma-\beta$ is a positively oriented closed countour around the origin.
5. Let \mathcal{C} be the positively oriented circle of radius $R>0$ centered at z_{0} and parameterized as $z=z_{0}+\operatorname{Re}^{i \theta}$ for $-\pi \leq \theta \leq \pi$. Show that

$$
\int_{\mathcal{C}}\left(z-z_{0}\right)^{n-1} d z= \begin{cases}0 & \text { when } n= \pm 1, \pm 2, \pm 3, \ldots \\ 2 \pi i & \text { when } n=0\end{cases}
$$

