MAT342 Homework 6 Solutions

Due Friday, March 15

1. Let $\beta(t)=2+e^{i t}$ for $-\pi \leq t \leq 0$, and evaluate $\int_{\beta}(z-2)^{3} d z$.

Since $(z-2)^{3}$ is entire, we can integrate along any path from 1 to 3 , for example, along the real line. So we have

$$
\int_{\beta}(z-2)^{3} d z=\int_{1}^{3}(z-2)^{3} d z=\left.\frac{1}{4}(z-2)^{4}\right|_{1} ^{3}=\frac{1}{4}(-1)^{4}-\frac{1}{4}=0 .
$$

2. Let γ be the boundary of the rectangle with vertices at the points $1,1+2 i,-1+2 i$, and -1 , oriented in the counterclockwise direction around the origin. Evaluate $\int_{\gamma} e^{i \bar{z}} d z$.
Since $e^{i \bar{z}}$ is not analytic, let's parameterize the curves and calculate the integral directly. Let the four sides be $R(t)=1+2 t i, T(t)=1-2 t+2 i, L(t)=-1+2 i-2 t i$, and $B(t)=-1+2 t$ with $0 \leq t \leq 1$. Then we have

$$
\begin{array}{rlll}
\int_{R} e^{i \bar{z}} d z & =\int_{0}^{1} e^{i(1-2 t i)} \cdot 2 i d t & =\left.i e^{i+2 t}\right|_{0} ^{1} & =i\left(e^{2+i}-e^{i}\right) \\
\int_{T} e^{i \bar{z}} d z & =\int_{0}^{1} e^{i(1-2 t-2 i)} \cdot(-2) d t & =-\left.i e^{2+i(1-2 t)}\right|_{0} ^{1} & =-i\left(e^{2-i}-e^{2+i}\right) \\
\int_{L} e^{i \bar{z}} d z & =\int_{0}^{1} e^{i(-1+2 i-2 t i)} \cdot(-2 i) d t & =-\left.i e^{i+2 t}\right|_{0} ^{1} & =-i\left(e^{2+i}-e^{i}\right) \\
\int_{B} e^{i \bar{z}} d z & =\int_{0}^{1} e^{i(-1+2 t)} \cdot 2 d t & =\left.i e^{i(1-2 t)}\right|_{0} ^{1} & =i\left(e^{-i}-e^{i}\right)
\end{array}
$$

and so

$$
\begin{aligned}
\int_{\gamma} e^{i \bar{z}} d z & =i\left(e^{2+i}-e^{i}-e^{2-i}+e^{2+i}-e^{2+i}+e^{i}+e^{-i}-e^{i}\right)=i\left(\left(e^{-i}-e^{i}\right)+\left(e^{2+i}-e^{2-i}\right)\right) \\
& =i\left(e^{2}-1\right)\left(e^{i}-e^{-i}\right)=-2\left(e^{2}-1\right) \sin 1 \approx-10.75241
\end{aligned}
$$

(Unless I screwed up, which happens.)
3. Let γ be the arc of the circle $|z|=2$ from $z=2$ to $z=2 i$ lying in the first quadrant. Without evaluating the integral, show that

$$
\left|\int_{\gamma} \frac{z+4}{z^{3}-1} d z\right| \leq \frac{6 \pi}{7}
$$

Here we use the fact that if γ is a contour of length L and $|f(z)|<M$ along $\gamma,\left|\int_{\gamma} f(z) d z\right|<M L$. Since γ is a quarter of a circle of radius 2 , it is of length $L=\pi$.
For $|z|=2$, we have $|z+4| \geq 6$ and $\left|z^{3}-1\right| \leq 7$, so $|f(z)| \leq 6 / 7$ along γ. This gives the result.
4. (a) Let $f_{1}(z)$ be the branch of $z^{1 / 2}$ given by

$$
f_{1}\left(r e^{i \theta}\right)=\sqrt{r} e^{i \theta / 2} \quad \text { with } r>0, \quad-\frac{\pi}{2}<\theta<\frac{3 \pi}{2},
$$

and let γ be any contour lying in the upper half-plane (that is, with $\operatorname{Im} \gamma(t)>0$ except at the endpoints of γ) which goes from 4 to -4 . Use an antiderivative of f_{1} to compute $\int_{\gamma} z^{1 / 2} d z$. Let $F_{1}(z)=\frac{2}{3} z^{3 / 2}$, with $z \neq 0$ and $-\frac{\pi}{2}<\arg z<\frac{3 \pi}{2}$. This is analytic on its domain, and $F^{\prime}(z)=z^{1 / 2}=f_{1}(z)$. Observe that $F_{1}(4)=16 / 3$ and $F_{1}(-4)=-16 i / 3$, so

$$
\int_{\gamma} f_{1}(z) d z=\left.F_{1}(z)\right|_{4} ^{-4}=-\frac{16(1+i)}{3}
$$

(b) Now let $f_{2}(z)$ be the branch of $z^{1 / 2}$ given by

$$
f_{2}\left(r e^{i \theta}\right)=\sqrt{r} e^{i \theta / 2} \quad \text { with } r>0, \quad \frac{\pi}{2}<\theta<\frac{5 \pi}{2}
$$

and let β be any contour lying in the lower half-plane which goes from 4 to -4 . Compute $\int_{\beta} z^{1 / 2} d z$ using an antiderivative of f_{2}.
Let $F_{2}(z)=\frac{2}{3} z^{3 / 2}$ with the same domain as f_{2}; then F_{2} is an antiderivative of f_{2} on its domain. Here we again have $F_{2}(-4)=-16 i / 3$, but in this branch $4=2 e^{2 \pi i}$, so $F_{2}(4)=\frac{2}{3} \cdot 8 e^{3 \pi i}=-16 / 3$. This means

$$
\int_{\beta} f_{2}(z) d z=F_{2}(-4)-F_{2}(4)=-16 i / 3+16 / 3=\frac{16(1-i)}{3}
$$

(c) Observe that $f_{1}(z)=f_{2}(z)$ for z in a neighborhood of -4 . Use the results of parts (a) and (b) to calculate

$$
\int_{\mathcal{C}} z^{1 / 2} d z
$$

where $\mathcal{C}=\gamma-\beta$ is a positively oriented closed countour around the origin.
As noted, $F_{1}(-4)=-16 i / 3=F_{2}(-4)$, and so if we take $\mathcal{C}=\gamma-\beta$, we will have

$$
\begin{aligned}
\int_{\mathcal{C}} z^{1 / 2} d z & =\int_{\gamma} z^{1 / 2} d z+\int_{-\beta} z^{1 / 2} d z=\int_{\gamma} z^{1 / 2} d z-\int_{\beta} z^{1 / 2} d z \\
& =\left(F_{1}(-4)-F_{1}(4)\right)-\left(F_{2}(-4)-F_{2}(4)\right)=F_{2}(4)-F_{1}(4)=-16 / 3-16 / 3=-32 / 3
\end{aligned}
$$

5. Let \mathcal{C} be the positively oriented circle of radius $R>0$ centered at z_{0} and parameterized as $z=z_{0}+R e^{i \theta}$ for $-\pi \leq \theta \leq \pi$. Show that

$$
\int_{\mathcal{C}}\left(z-z_{0}\right)^{n-1} d z= \begin{cases}0 & \text { when } n= \pm 1, \pm 2, \pm 3, \ldots \\ 2 \pi i & \text { when } n=0\end{cases}
$$

First, consider n as any nonzero integer, that is, $n \in\{ \pm 1, \pm 2, \pm 3, \ldots\}$. In this case, $\left(z-z_{0}\right)^{n-1}$ has an antiderivative $\frac{1}{n}\left(z-z_{0}\right)^{n}$ which is analytic on a neighborhood of \mathcal{C}. (In fact, this antiderivative is entire if n is a positive integer and analytic $\mathbb{C}-\left\{z_{0}\right\}$ when n is a negative integer.) If a function has an analytic antiderivative defined on a neighborhood of a closed contour \mathcal{C}, then its integral over that contour is zero.

Now consider $n=0$. In this case, there is an antiderivative which is $F(z)=\log \left(z-z_{0}\right)$, but this function is only analytic on a domain which omits a simple curve joining z_{0} to ∞. That is, we have to choose an appropiate branch of the logarithm. Given the parameterization of \mathcal{C}, it makes sense to choose the principal branch $\log \left(z-z_{0}\right)$ (but in fact, we can choose any branch).

Then observe that

$$
\lim _{\theta \rightarrow \pi^{-}} F\left(z_{0}+R e^{i \theta}\right)=\ln R+\pi i \quad \text { but } \quad \lim _{\theta \rightarrow \pi^{+}} F\left(z_{0}+R e^{i \theta}\right)=\ln R-\pi i
$$

and hence $\int_{\mathcal{C}} \frac{d z}{z-z_{0}}=2 \pi i$.
If you choose a different branch of the logarithm, a little more work is needed but the result is the same.

