MAT342 Homework 6 Solutions

Due Friday, March 15

1. Let $\beta(t) = 2 + e^{it}$ for $-\pi \le t \le 0$, and evaluate $\int_{\beta} (z-2)^3 dz$.

Since $(z-2)^3$ is entire, we can integrate along any path from 1 to 3, for example, along the real line. So we have

$$\int_{\beta} (z-2)^3 dz = \int_1^3 (z-2)^3 dz = \frac{1}{4} (z-2)^4 \Big|_1^3 = \frac{1}{4} (-1)^4 - \frac{1}{4} = 0 \; .$$

2. Let γ be the boundary of the rectangle with vertices at the points 1, 1 + 2i, -1 + 2i, and -1, oriented in the counterclockwise direction around the origin. Evaluate $\int_{-\infty}^{\infty} e^{i\overline{z}} dz$.

Since $e^{i\overline{z}}$ is not analytic, let's parameterize the curves and calculate the integral directly. Let the four sides be R(t) = 1 + 2ti, T(t) = 1 - 2t + 2i, L(t) = -1 + 2i - 2ti, and B(t) = -1 + 2t with $0 \le t \le 1$. Then we have

$$\begin{split} \int_{R} e^{i\overline{z}} dz &= \int_{0}^{1} e^{i(1-2ti)} \cdot 2i dt &= i e^{i+2t} \Big|_{0}^{1} &= i(e^{2+i}-e^{i}) , \\ \int_{T} e^{i\overline{z}} dz &= \int_{0}^{1} e^{i(1-2t-2i)} \cdot (-2) dt &= -i e^{2+i(1-2t)} \Big|_{0}^{1} &= -i(e^{2-i}-e^{2+i}) , \\ \int_{L} e^{i\overline{z}} dz &= \int_{0}^{1} e^{i(-1+2i-2ti)} \cdot (-2i) dt &= -i e^{i+2t} \Big|_{0}^{1} &= -i(e^{2+i}-e^{i}) , \\ \int_{B} e^{i\overline{z}} dz &= \int_{0}^{1} e^{i(-1+2t)} \cdot 2 dt &= i e^{i(1-2t)} \Big|_{0}^{1} &= i(e^{-i}-e^{i}) , \end{split}$$

and so

$$\int_{\gamma} e^{i\overline{z}} dz = i(e^{2+i} - e^i - e^{2-i} + e^{2+i} - e^{2+i} + e^i + e^{-i} - e^i) = i\left((e^{-i} - e^i) + (e^{2+i} - e^{2-i})\right)$$
$$= i(e^2 - 1)(e^i - e^{-i}) = -2(e^2 - 1)\sin 1 \approx -10.75241 .$$

(Unless I screwed up, which happens.)

3. Let γ be the arc of the circle |z| = 2 from z = 2 to z = 2i lying in the first quadrant. Without evaluating the integral, show that

$$\left|\int_{\gamma} \frac{z+4}{z^3-1} dz\right| \leq \frac{6\pi}{7} \; .$$

Here we use the fact that if γ is a contour of length L and |f(z)| < M along γ , $|\int_{\gamma} f(z) dz| < ML$. Since γ is a quarter of a circle of radius 2, it is of length $L = \pi$. For |z| = 2, we have $|z+4| \ge 6$ and $|z^3 - 1| \le 7$, so $|f(z)| \le 6/7$ along γ . This gives the result. 4. (a) Let $f_1(z)$ be the branch of $z^{1/2}$ given by

$$f_1(re^{i\theta}) = \sqrt{r}e^{i\theta/2}$$
 with $r > 0$, $-\frac{\pi}{2} < \theta < \frac{3\pi}{2}$,

and let γ be any contour lying in the *upper* half-plane (that is, with Im $\gamma(t) > 0$ except at the endpoints of γ) which goes from 4 to -4. Use an antiderivative of f_1 to compute $\int_{\alpha} z^{1/2} dz$.

Let
$$F_1(z) = \frac{2}{3}z^{3/2}$$
, with $z \neq 0$ and $-\frac{\pi}{2} < \arg z < \frac{3\pi}{2}$. This is analytic on its domain, and $F'(z) = z^{1/2} = f_1(z)$. Observe that $F_1(4) = 16/3$ and $F_1(-4) = -16i/3$, so

$$\int_{\gamma} f_1(z) \, dz = F_1(z) \Big|_4^{-4} = -\frac{16(1+i)}{3}$$

(b) Now let $f_2(z)$ be the branch of $z^{1/2}$ given by

$$f_2(re^{i\theta}) = \sqrt{r}e^{i\theta/2}$$
 with $r > 0$, $\frac{\pi}{2} < \theta < \frac{5\pi}{2}$,

and let β be any contour lying in the *lower* half-plane which goes from 4 to -4. Compute $\int_{\beta} z^{1/2} dz$ using an antiderivative of f_2 .

Let $F_2(z) = \frac{2}{3}z^{3/2}$ with the same domain as f_2 ; then F_2 is an antiderivative of f_2 on its domain. Here we again have $F_2(-4) = -16i/3$, but in this branch $4 = 2e^{2\pi i}$, so $F_2(4) = \frac{2}{3} \cdot 8e^{3\pi i} = -16/3$. This means

$$\int_{\beta} f_2(z) \, dz = F_2(-4) - F_2(4) = -16i/3 + 16/3 = \frac{16(1-i)}{3} \, .$$

(c) Observe that $f_1(z) = f_2(z)$ for z in a neighborhood of -4. Use the results of parts (a) and (b) to calculate

$$\int_{\mathcal{C}} z^{1/2} dz$$

where $C = \gamma - \beta$ is a positively oriented closed countour around the origin.

As noted, $F_1(-4) = -16i/3 = F_2(-4)$, and so if we take $\mathcal{C} = \gamma - \beta$, we will have

$$\int_{\mathcal{C}} z^{1/2} dz = \int_{\gamma} z^{1/2} dz + \int_{-\beta} z^{1/2} dz = \int_{\gamma} z^{1/2} dz - \int_{\beta} z^{1/2} dz$$
$$= \left(F_1(-4) - F_1(4)\right) - \left(F_2(-4) - F_2(4)\right) = F_2(4) - F_1(4) = -16/3 - 16/3 = -32/3 .$$

5. Let C be the positively oriented circle of radius R > 0 centered at z_0 and parameterized as $z = z_0 + Re^{i\theta}$ for $-\pi \le \theta \le \pi$. Show that

$$\int_{\mathcal{C}} (z - z_0)^{n-1} dz = \begin{cases} 0 & \text{when } n = \pm 1, \pm 2, \pm 3, \dots \\ 2\pi i & \text{when } n = 0. \end{cases}$$

First, consider *n* as any nonzero integer, that is, $n \in \{\pm 1, \pm 2, \pm 3, ...\}$. In this case, $(z-z_0)^{n-1}$ has an antiderivative $\frac{1}{n}(z-z_0)^n$ which is analytic on a neighborhood of C. (In fact, this antiderivative is entire if *n* is a positive integer and analytic $\mathbb{C} - \{z_0\}$ when *n* is a negative integer.) If a function has an analytic antiderivative defined on a neighborhood of a closed contour C, then its integral over that contour is zero.

Now consider n = 0. In this case, there is an antiderivative which is $F(z) = \log(z - z_0)$, but this function is only analytic on a domain which omits a simple curve joining z_0 to ∞ . That is, we have to choose an appropriate branch of the logarithm. Given the parameterization of C, it makes sense to choose the principal branch $Log(z - z_0)$ (but in fact, we can choose any branch).

Then observe that

$$\lim_{\theta \to \pi^-} F(z_0 + Re^{i\theta}) = \ln R + \pi i \quad \text{but} \quad \lim_{\theta \to \pi^+} F(z_0 + Re^{i\theta}) = \ln R - \pi i$$

and hence
$$\int_{\mathcal{C}} \frac{dz}{z - z_0} = 2\pi i.$$

If you choose a different branch of the logarithm, a little more work is needed but the result is the same.