MAT342 Homework 5

Due Wednesday, March 6

1. We (supposedly, but see quiz 2) know that if the derivative of a function f exists at z_{0} then the Cauchy-Riemann equations must hold, but that the converse is not necessarily true (additional conditions are needed, such as continuity of partials).

Show that for the function

$$
f(z)=f(x+i y)= \begin{cases}\frac{x^{2}-y^{2}-2 x y i}{x+i y} & \text { if } z \neq 0 \\ 0 & \text { if } z=0\end{cases}
$$

the Cauchy-Riemann equations hold at $z=0$ but f is not differentiable at $z=0$. Hint: consider $z \rightarrow 0$ along the real axis and along the line $y=x$.
2. Explain why $\operatorname{Re}\left(e^{1 / z^{2}}\right)$ is harmonic everywhere except at the origin.
3. (a) Assume that $w \in \mathbb{C}$ with $\alpha<\operatorname{Im} w<\alpha+2 \pi$ for some (fixed) $\alpha \in \mathbb{R}$. Show that for $z=r e^{i \theta}$, when the branch of logarithm

$$
\log z=\ln r+i \theta, \quad \text { with } r>0, \alpha<\theta<\alpha+2 \pi
$$

is used, we always have $\log \left(e^{w}\right)=w$.
(b) Give an branch of the logarithm that ensures that for $\beta=1+i$ we have

$$
\log \left(\beta^{8}\right)=8 \log (\beta)
$$

(c) For the same β as in the previous part, give a branch of the logarithm for which

$$
\log \left(\beta^{8}\right) \neq 8 \log (\beta)
$$

4. Calculate each of the following. Keep in mind that these expressions can be multivalued.
(a) $(-1+i \sqrt{3})^{3 / 2}$
(b) i^{π}
(c) π^{i}
(d) $i^{-2 i}$
5. Find all roots of the equation $\sin z=\cosh 4$ by equating the real parts of both sides, then equating the imaginary parts.
6. Show that $\sinh z=0$ if and only if $z=i n \pi$ with $n \in \mathbb{Z}$. You may use facts we already established about $e^{z}, \sin z$ and $\cos z$ without reproving them explicitly.
7. Evaluate the integrals below.
(a) $\int_{0}^{1}(1+i t)^{2} d t$
(b) $\int_{0}^{\pi / 2} e^{2 t i} d t$
