MAT342 Homework 5 Solutions

Due Wednesday, March 6

1. We (supposedly, but see quiz 2) know that if the derivative of a function f exists at z_{0} then the Cauchy-Riemann equations must hold, but that the converse is not necessarily true (additional conditions are needed, such as continuity of partials).

Show that for the function

$$
f(z)=f(x+i y)= \begin{cases}\frac{x^{2}-y^{2}-2 x y i}{x+i y} & \text { if } z \neq 0 \\ 0 & \text { if } z=0\end{cases}
$$

the Cauchy-Riemann equations hold at $z=0$ but f is not differentiable at $z=0$.
Hint: consider $z \rightarrow 0$ along the real axis and along the line $y=x$.
To check the Cauchy-Riemann equations, we must check that $u_{x}=v_{y}$ and $u_{y}=-v_{x}$, where $f(x+i y)=u(x, y)+i v(x, y)$. Observe that for $z \neq 0, f(z)=\frac{\bar{z}^{2}}{z}=\frac{\bar{z}^{3}}{|z|}$ (this isn't strictly necessary, but is easier for me to think of.) So for $z=x+i y$, we have

$$
f(z)=\frac{(x-i y)^{2}}{x+i y}=\frac{(x-i y)^{3}}{x^{2}+y^{2}}=\frac{x^{3}-3 x y^{2}}{x^{2}+y^{2}}+i \frac{y^{3}-3 x^{2} y}{x^{2}+y^{2}} .
$$

Now we calculate

$$
u_{x}(0,0)=\lim _{x \rightarrow 0} \frac{u(x, 0)-u(0,0)}{x}=\lim _{x \rightarrow 0} \frac{x^{3} / x^{2}}{x}=\lim _{x \rightarrow 0} 1=1 .
$$

Similarly,

$$
v_{y}(0,0)=\lim _{y \rightarrow 0} \frac{v(0, y)-v(0,0)}{y}=\lim _{y \rightarrow 0} \frac{y^{3} / y^{2}}{y}=1
$$

so $u_{x}(0,0)=1=v_{y}(0,0)$. The other two partials are even easier:

$$
u_{y}=\lim _{y \rightarrow 0} \frac{u(0, y)-u(0,0)}{y}=\lim _{y \rightarrow 0} \frac{0}{y^{3}}=0 \quad \text { and } \quad v_{x}=\lim _{x \rightarrow 0} \frac{v(x, 0)-v(0,0)}{x}=\lim _{y \rightarrow 0} \frac{0}{x^{3}}=0
$$

and hence $u_{y}(0,0)=0=-v_{x}(0,0)$, showing the Cauchy-Riemann equations hold.
To see that $f(z)$ is not differentiable at $z=0$, first look at the derivative (as a limit) along the real axis (which is actually just $u_{x}+i v_{x}$), where we have

$$
\lim _{x \rightarrow 0} \frac{f(x+0 i)-f(0)}{x}=\lim _{x \rightarrow 0} \frac{x^{2} / x}{x}=1
$$

But if we look along the line $x=y$ (that is, $\operatorname{Re} z=\operatorname{Im} z$), we get

$$
\lim _{x \rightarrow 0} \frac{f(x+i x)-f(0)}{x+i x}=\lim _{x \rightarrow 0} \frac{x^{2}-x^{2}-2 x^{2} i}{(x+i x) \cdot x} \lim _{x \rightarrow 0} \frac{-2 i}{1+i}=-1-i
$$

Obviously, these are not the same. The complex derivative of f does not exist at $z=0$ (since we get different values of the limit by different approaches to 0), despite the Cauchy-Riemann equations being satisfied there.
2. Explain why $\operatorname{Re}\left(e^{1 / z^{2}}\right)$ is harmonic everywhere except at the origin.

On any domain not containing the origin, $1 / z^{2}$ is analytic. Since the exponential function is entire, the composition $e^{1 / z^{2}}$ is analytic on any domain avoiding the origin.

The real part of any analytic function is always a harmonic function.
If you are a masochist, you can write the function out in real and imaginary parts, and then compute that $u_{x x}+v_{y y}=0$. But that is a lot of work, and I certainly don't want to do that.
3. (a) Assume that $w \in \mathbb{C}$ with $\alpha<\operatorname{Im} w<\alpha+2 \pi$ for some (fixed) $\alpha \in \mathbb{R}$. Show that for $z=r e^{i \theta}$, when the branch of logarithm

$$
\log z=\ln r+i \theta, \quad \text { with } r>0, \alpha<\theta<\alpha+2 \pi
$$

is used, we always have $\log \left(e^{w}\right)=w$.
Let's write $w=x+i y$, where $x \in \mathbb{R}$ and $\alpha<y<\alpha+2 \pi$. Then $e^{w}=e^{x+i y}=e^{x} e^{i y}$, and

$$
\log \left(e^{w}\right)=\left\{\ln \left(e^{x}\right)+(y+2 \pi n) i\right\}, \quad n \in \mathbb{Z},
$$

where $\ell o g$ represents the multivalued logarithm and (as usual) In represents the logarithm from \mathbb{R}^{+}to \mathbb{R}. But the branch of the logarithm taken in this problem corresponds to $n=0$ (since $\alpha<y<\alpha+2 \pi$), and we have

$$
\log \left(e^{w}\right)=\ln \left(e^{x}\right)+i y=x+i y=w .
$$

(b) Give an branch of the logarithm that ensures that for $\beta=1+i$ we have

$$
\log \left(\beta^{8}\right)=8 \log (\beta)
$$

Observe that $\beta=1+i=\sqrt{2} e^{i \pi / 4}$ and $\beta^{8}=\left(\sqrt{2} e^{i \pi / 4}\right)^{8}=16$. Consequently, if the branch of the logarithm chosen has $\log \beta=\frac{\ln 2}{2}+i \frac{\pi}{4}$, we also need $\log \beta^{8}=\log (16)=4 \ln 2+2 \pi i$. This means we need to take a branch cut of argument α where $0<\alpha<\pi / 4$. For example, we may choose $\alpha=\pi / 8$. Then

$$
\log (1+i)^{8}=\log (16)=4 \ln 2+2 \pi i=8\left(\frac{\ln 2}{2}+\frac{\pi}{4} i\right)=8 \log (1+i)
$$

where \log is the branch of the logarithm with $\log (z)=\ln |z|+i \arg z, \quad \pi / 8<\arg z<17 \pi / 8$.
(c) For the same β as in the previous part, give a branch of the logarithm for which

$$
\log \left(\beta^{8}\right) \neq 8 \log (\beta)
$$

Again, assuming we take a branch so that $\operatorname{Im} \log \beta=\pi / 4$, any branch cut of argument α where $\alpha \geq \pi / 4$ or $\alpha \leq 0$ will do. For example, for the principal branch of the logarithm (that is, with $\alpha=-\pi$), we have
$\log \beta^{8}=\log 16=\ln 16=4 \ln 2 \neq 8 \log (1+i)=8\left(\frac{\ln 2}{2}+\frac{\pi}{4} i\right)=4 \ln 2+2 \pi i$.
4. Calculate each of the following. Keep in mind that these expressions can be multivalued.
(a) $(-1+i \sqrt{3})^{3 / 2}$

$$
=\left(2 e^{2 \pi i / 3}\right)^{3 / 2}=\left(8 e^{2 \pi i}\right)^{1 / 2}=(8)^{1 / 2}=\{2 \sqrt{2},-2 \sqrt{2}\}
$$

Note that this is the same result that you would get by writing

$$
\exp \left(\frac{3}{2} \log (-1+\sqrt{3} i)\right)=\exp \left(\ln \left(2^{3 / 2}\right)+\frac{3}{2}(2 \pi / 3+2 n \pi) i\right)=\sqrt{8} e^{(\pi+3 n \pi) i} \quad \text { for } n \in \mathbb{Z}
$$ since for n even, $e^{(3 n+1) \pi i}=-1$ and for n odd, $e^{(3 n+1) \pi i}=1$.

(b) $i^{\pi} \quad=e^{\pi \log i}=\exp (\pi(i \pi / 2+2 n \pi i))=\exp \left(i\left(\pi^{2} / 2+2 n \pi^{2}\right)\right)=\cos \left(\frac{4 n+1}{2} \pi^{2}\right)+i \sin \left(\frac{4 n+1}{2} \pi^{2}\right)$ for $n \in \mathbb{Z}$.
(c) $\pi^{i} \quad=e^{i \log \pi}=e^{i(\ln \pi+2 n \pi i)}==e^{i \ln \pi-2 n \pi)}=e^{2 n \pi}(\cos (\ln (\pi))+i \sin (\ln (\pi))) \quad$ for $n \in \mathbb{Z}$.
(d) $i^{-2 i} \quad i^{-2 i}=\exp (-2 i \log i)=\exp \left(-2 i\left(i \frac{\pi}{2}+2 n \pi i\right)=e^{(4 n+1) \pi} \quad\right.$ for $n \in \mathbb{Z}$.

Observe that the answer to (a) has two values, as you should expect from a square root. By contrast, (b) has infinitely many values distributed densely around the unit circle, the answer to (c) is an infinite set of values along a ray of argument $\ln \pi \approx 1.1447$ and part (d) has infinitely many values, but they are all real.
5. Find all roots of the equation $\sin z=\cosh 4$ by equating the real parts of both sides, then equating the imaginary parts.
Recall that $\sin (z)=\frac{1}{2 i}\left(e^{i z}-e^{-i z}\right)$, and writing $z=x+i y$ gives the equation

$$
e^{i x-y}-e^{-i x+y}=2 i \cosh (4)
$$

which we can rewrite as

$$
e^{-y}(\cos x+i \sin x)-e^{y}(\cos (-x)+i \sin (-x))=2 i \cosh (4) .
$$

Note that $\cos (-x)=\cos (x)$ and $\sin (-x)=-\sin (x)$. Then equating real parts of both sides, and then imaginary parts yields the two equations

$$
\cos x\left(e^{-y}-e^{y}\right)=0 \quad \sin x\left(e^{-y}+e^{y}\right)=2 \cosh (4) .
$$

The equation on the left tells us that either $y=0$ or $x=\frac{\pi}{2}+2 n \pi$ for some $n \in \mathbb{Z}$. But from the right-hand equation, we cannot have $y=0\left(\right.$ since $\left.\cosh (4)=\frac{1}{2}\left(e^{4}+e^{-4}\right) \neq 0\right)$. Hence $\sin x=1$.

Using this, we can rewrite the right-hand equation as $e^{-y}+e^{y}=e^{4}+e^{-4}$. Consequently, $y= \pm 4$. There can be no other solutions, since $e^{-y}+e^{y}$ is monotonically decreasing for $y<0$ and increasing for $y>0$.

Hence, any solution to the equation is of the form

$$
z=\frac{\pi}{2}+2 n \pi \pm 4 i, \quad \text { for } n \in \mathbb{Z}
$$

(and every such number is a solution).
6. Show that $\sinh z=0$ if and only if $z=i n \pi$ with $n \in \mathbb{Z}$. You may use facts we already established about $e^{z}, \sin z$ and $\cos z$ without reproving them explicitly.
Recall that $\sinh z=-i \sin (i z)$. We already know that all the zeros of $\sin z$ are real numbers of the form $n \pi$ with $n \in \mathbb{Z}$, and hence the zeros of $\sinh z$ are exactly the points on the imaginary axis of the form $n \pi i$ for $n \in \mathbb{Z}$.
7. Evaluate the integrals below.
(a) $\int_{0}^{1}(1+i t)^{2} d t=\int_{0}^{1} 1-t^{2} d t+i \int_{0}^{1} 2 t d t=t-t^{3} /\left.3\right|_{0} ^{1}+\left.i t^{2}\right|_{0} ^{1}=\frac{2}{3}+i$.
(b) $\int_{0}^{\pi / 2} e^{2 t i} d t \quad=\int_{0}^{\pi / 2} \cos (2 t) d t+i \int_{0}^{\pi / 2} \sin (2 t) d t=\left.\frac{1}{2} \sin (2 t)\right|_{0} ^{\pi / 2}-\left.\frac{i}{2} \cos (2 t)\right|_{0} ^{\pi / 2}=-i$.

