MAT342 Homework 5 Solutions

Due Wednesday, March 6

1. We (supposedly, but see quiz 2) know that if the derivative of a function f exists at z_0 then the Cauchy-Riemann equations must hold, but that the converse is not necessarily true (additional conditions are needed, such as continuity of partials).

Show that for the function

$$f(z) = f(x+iy) = \begin{cases} \frac{x^2 - y^2 - 2xyi}{x+iy} & \text{if } z \neq 0\\ 0 & \text{if } z = 0 \end{cases}$$

the Cauchy-Riemann equations hold at z = 0 but f is not differentiable at z = 0. Hint: consider $z \to 0$ along the real axis and along the line y = x.

To check the Cauchy-Riemann equations, we must check that $u_x = v_y$ and $u_y = -v_x$, where f(x+iy) = u(x,y) + iv(x,y). Observe that for $z \neq 0$, $f(z) = \frac{\overline{z}^2}{z} = \frac{\overline{z}^3}{|z|}$ (this isn't strictly necessary, but is easier for me to think of.) So for z = x + iy, we have

$$f(z) = \frac{(x-iy)^2}{x+iy} = \frac{(x-iy)^3}{x^2+y^2} = \frac{x^3-3xy^2}{x^2+y^2} + i\frac{y^3-3x^2y}{x^2+y^2}.$$

Now we calculate

$$u_x(0,0) = \lim_{x \to 0} \frac{u(x,0) - u(0,0)}{x} = \lim_{x \to 0} \frac{x^3/x^2}{x} = \lim_{x \to 0} 1 = 1.$$

Similarly,

$$v_y(0,0) = \lim_{y \to 0} \frac{v(0,y) - v(0,0)}{y} = \lim_{y \to 0} \frac{y^3/y^2}{y} = 1$$

so $u_x(0,0) = 1 = v_y(0,0)$. The other two partials are even easier:

$$u_{y} = \lim_{y \to 0} \frac{u(0, y) - u(0, 0)}{y} = \lim_{y \to 0} \frac{0}{y^{3}} = 0 \quad \text{and} \quad v_{x} = \lim_{x \to 0} \frac{v(x, 0) - v(0, 0)}{x} = \lim_{y \to 0} \frac{0}{x^{3}} = 0$$

and hence $u_y(0,0) = 0 = -v_x(0,0)$, showing the Cauchy-Riemann equations hold.

To see that f(z) is not differentiable at z = 0, first look at the derivative (as a limit) along the real axis (which is actually just $u_x + iv_x$), where we have

$$\lim_{x \to 0} \frac{f(x+0i) - f(0)}{x} = \lim_{x \to 0} \frac{x^2/x}{x} = 1$$

But if we look along the line x = y (that is, Rez = Imz), we get

$$\lim_{x \to 0} \frac{f(x+ix) - f(0)}{x+ix} = \lim_{x \to 0} \frac{x^2 - x^2 - 2x^2i}{(x+ix) \cdot x} \lim_{x \to 0} \frac{-2i}{1+i} = -1 - i.$$

Obviously, these are not the same. The complex derivative of f does not exist at z = 0 (since we get different values of the limit by different approaches to 0), despite the Cauchy-Riemann equations being satisfied there.

2. Explain why $\operatorname{Re}(e^{1/z^2})$ is harmonic everywhere except at the origin.

On any domain not containing the origin, $1/z^2$ is analytic. Since the exponential function is entire, the composition e^{1/z^2} is analytic on any domain avoiding the origin.

The real part of any analytic function is always a harmonic function.

If you are a masochist, you can write the function out in real and imaginary parts, and then compute that $u_{xx} + v_{yy} = 0$. But that is a lot of work, and I certainly don't want to do that.

3. (a) Assume that $w \in \mathbb{C}$ with $\alpha < \operatorname{Im} w < \alpha + 2\pi$ for some (fixed) $\alpha \in \mathbb{R}$. Show that for $z = re^{i\theta}$, when the branch of logarithm

$$\log z = \ln r + i\theta$$
, with $r > 0, \alpha < \theta < \alpha + 2\pi$

is used, we always have $\log(e^w) = w$.

Let's write
$$w = x + iy$$
, where $x \in \mathbb{R}$ and $\alpha < y < \alpha + 2\pi$. Then $e^w = e^{x+iy} = e^x e^{iy}$, and

$$log(e^w) = \{ ln(e^x) + (y + 2\pi n)i \}, n \in \mathbb{Z},$$

where log represents the multivalued logarithm and (as usual) In represents the logarithm from \mathbb{R}^+ to \mathbb{R} . But the branch of the logarithm taken in this problem corresponds to n = 0 (since $\alpha < y < \alpha + 2\pi$), and we have

$$\log(e^w) = \ln(e^x) + iy = x + iy = w .$$

(b) Give an branch of the logarithm that ensures that for $\beta = 1 + i$ we have

$$\log(\beta^{*}) = 8\log(\beta).$$

0

Observe that $\beta = 1 + i = \sqrt{2} e^{i\pi/4}$ and $\beta^8 = (\sqrt{2} e^{i\pi/4})^8 = 16$. Consequently, if the branch of the logarithm chosen has $\log \beta = \frac{\ln 2}{2} + i\frac{\pi}{4}$, we also need $\log \beta^8 = \log(16) = 4\ln 2 + 2\pi i$. This means we need to take a branch cut of argument α where $0 < \alpha < \pi/4$. For example, we may choose $\alpha = \pi/8$. Then

$$\log (1+i)^8 = \log(16) = 4 \ln 2 + 2\pi i = 8(\frac{\ln 2}{2} + \frac{\pi}{4}i) = 8 \log(1+i) ,$$

where log is the branch of the logarithm with $\log(z) = \ln |z| + i \arg z$, $\pi/8 < \arg z < 17\pi/8$.

(c) For the same β as in the previous part, give a branch of the logarithm for which

$$\log(\boldsymbol{\beta}^{\boldsymbol{\aleph}}) \neq 8\log(\boldsymbol{\beta}).$$

Again, assuming we take a branch so that $\operatorname{Im}\log\beta = \pi/4$, any branch cut of argument α where $\alpha \geq \pi/4$ or $\alpha \leq 0$ will do. For example, for the principal branch of the logarithm (that is, with $\alpha = -\pi$), we have

$$\log \beta^8 = \log 16 = \ln 16 = 4 \ln 2 \quad \neq \quad 8 \log(1+i) = 8 (\frac{\ln 2}{2} + \frac{\pi}{4}i) = 4 \ln 2 + 2\pi i .$$

4. Calculate each of the following. Keep in mind that these expressions can be *multivalued*.

(a)
$$(-1+i\sqrt{3})^{3/2} = (2e^{2\pi i/3})^{3/2} = (8e^{2\pi i})^{1/2} = (8)^{1/2} = \{2\sqrt{2}, -2\sqrt{2}\}.$$

Note that this is the same result that you would get by writing

$$\exp(\frac{3}{2}\log(-1+\sqrt{3}i)) = \exp\left(\ln(2^{3/2}) + \frac{3}{2}(2\pi/3+2n\pi)i\right) = \sqrt{8}e^{(\pi+3n\pi)i} \quad \text{for } n \in \mathbb{Z}$$

since for *n* even, $e^{(3n+1)\pi i} = -1$ and for *n* odd, $e^{(3n+1)\pi i} = 1$.

(b) $i^{\pi} = e^{\pi \log i} = \exp\left(\pi(i\pi/2 + 2n\pi i)\right) = \exp\left(i(\pi^2/2 + 2n\pi^2)\right) = \cos\left(\frac{4n+1}{2}\pi^2\right) + i\sin\left(\frac{4n+1}{2}\pi^2\right)$ for $n \in \mathbb{Z}$.

(c)
$$\pi^i = e^{i\log\pi} = e^{i(\ln\pi + 2n\pi i)} = = e^{i\ln\pi - 2n\pi} = e^{2n\pi}(\cos(\ln(\pi)) + i\sin(\ln(\pi)))$$
 for $n \in \mathbb{Z}$.

(d)
$$i^{-2i} = \exp(-2i\log i) = \exp(-2i(i\frac{\pi}{2} + 2n\pi i)) = e^{(4n+1)\pi}$$
 for $n \in \mathbb{Z}$.

Observe that the answer to (a) has two values, as you should expect from a square root. By contrast, (b) has infinitely many values distributed densely around the unit circle, the answer to (c) is an infinite set of values along a ray of argument $\ln \pi \approx 1.1447$ and part (d) has infinitely many values, but they are all real.

5. Find all roots of the equation $\sin z = \cosh 4$ by equating the real parts of both sides, then equating the imaginary parts.

Recall that $sin(z) = \frac{1}{2i}(e^{iz} - e^{-iz})$, and writing z = x + iy gives the equation $e^{ix-y} - e^{-ix+y} = 2i\cosh(4)$

which we can rewrite as

$$e^{-y}(\cos x + i\sin x) - e^{y}(\cos(-x) + i\sin(-x)) = 2i\cosh(4)$$

Note that $\cos(-x) = \cos(x)$ and $\sin(-x) = -\sin(x)$. Then equating real parts of both sides, and then imaginary parts yields the two equations

$$\cos x (e^{-y} - e^{y}) = 0$$
 $\sin x (e^{-y} + e^{y}) = 2\cosh(4)$.

The equation on the left tells us that either y = 0 or $x = \frac{\pi}{2} + 2n\pi$ for some $n \in \mathbb{Z}$. But from the right-hand equation, we cannot have y = 0 (since $\cosh(4) = \frac{1}{2}(e^4 + e^{-4}) \neq 0$). Hence $\sin x = 1$.

Using this, we can rewrite the right-hand equation as $e^{-y} + e^y = e^4 + e^{-4}$. Consequently, $y = \pm 4$. There can be no other solutions, since $e^{-y} + e^y$ is monotonically decreasing for y < 0 and increasing for y > 0.

Hence, any solution to the equation is of the form

$$z = \frac{\pi}{2} + 2n\pi \pm 4i$$
, for $n \in \mathbb{Z}$

(and every such number is a solution).

6. Show that $\sinh z = 0$ if and only if $z = in\pi$ with $n \in \mathbb{Z}$. You may use facts we already established about e^z , $\sin z$ and $\cos z$ without reproving them explicitly.

Recall that $\sinh z = -i\sin(iz)$. We already know that all the zeros of $\sin z$ are real numbers of the form $n\pi$ with $n \in \mathbb{Z}$, and hence the zeros of $\sinh z$ are exactly the points on the imaginary axis of the form $n\pi i$ for $n \in \mathbb{Z}$.

7. Evaluate the integrals below.

(a)
$$\int_0^1 (1+it)^2 dt = \int_0^1 1 - t^2 dt + i \int_0^1 2t \, dt = t - t^3/3 \Big|_0^1 + it^2 \Big|_0^1 = \frac{2}{3} + i$$
.
(b) $\int_0^{\pi/2} e^{2ti} dt = \int_0^{\pi/2} \cos(2t) \, dt + i \int_0^{\pi/2} \sin(2t) \, dt = \frac{1}{2} \sin(2t) \Big|_0^{\pi/2} - \frac{i}{2} \cos(2t) \Big|_0^{\pi/2} = -i$.