
MAT342 Homework 5 Solutions
Due Wednesday, March 6

1. We (supposedly, but see quiz 2) know that if the derivative of a function f exists at z0 then the
Cauchy-Riemann equations must hold, but that the converse is not necessarily true (additional
conditions are needed, such as continuity of partials).

Show that for the function

f (z) = f (x+ iy) =

{
x2−y2−2xy i

x+iy if z 6= 0
0 if z = 0

the Cauchy-Riemann equations hold at z = 0 but f is not differentiable at z = 0.
Hint: consider z→ 0 along the real axis and along the line y = x.

To check the Cauchy-Riemann equations, we must check that ux = vy and uy = −vx, where

f (x+ iy) = u(x,y)+ iv(x,y). Observe that for z 6= 0, f (z) = z2

z = z3

|z| (this isn’t strictly necessary,

but is easier for me to think of.) So for z = x+ iy, we have

f (z) =
(x− iy)2

x+ iy
=

(x− iy)3

x2 + y2 =
x3−3xy2

x2 + y2 + i
y3−3x2y
x2 + y2 .

Now we calculate

ux(0,0) = lim
x→0

u(x,0)−u(0,0)
x

= lim
x→0

x3/x2

x
= lim

x→0
1 = 1.

Similarly,

vy(0,0) = lim
y→0

v(0,y)− v(0,0)
y

= lim
y→0

y3/y2

y
= 1,

so ux(0,0) = 1 = vy(0,0). The other two partials are even easier:

uy = lim
y→0

u(0,y)−u(0,0)
y

= lim
y→0

0
y3 = 0 and vx = lim

x→0

v(x,0)− v(0,0)
x

= lim
y→0

0
x3 = 0

and hence uy(0,0) = 0 =−vx(0,0), showing the Cauchy-Riemann equations hold.

To see that f (z) is not differentiable at z = 0, first look at the derivative (as a limit) along
the real axis (which is actually just ux + ivx), where we have

lim
x→0

f (x+0i)− f (0)
x

= lim
x→0

x2/x
x

= 1.

But if we look along the line x = y (that is, Rez = Imz), we get

lim
x→0

f (x+ ix)− f (0)
x+ ix

= lim
x→0

x2− x2−2x2i
(x+ ix) · x

lim
x→0

−2i
1+ i

=−1− i.

Obviously, these are not the same. The complex derivative of f does not exist at z = 0 (since
we get different values of the limit by different approaches to 0), despite the Cauchy-Riemann
equations being satisfied there.

2. Explain why Re(e1/z2
) is harmonic everywhere except at the origin.

On any domain not containing the origin, 1/z2 is analytic. Since the exponential function is

entire, the composition e1/z2
is analytic on any domain avoiding the origin.

The real part of any analytic function is always a harmonic function.

If you are a masochist, you can write the function out in real and imaginary parts, and then
compute that uxx + vyy = 0. But that is a lot of work, and I certainly don’t want to do that.

http://www.math.stonybrook.edu/~scott/mat342.spr19/exams/quiz2.pdf
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3. (a) Assume that w ∈C with α < Imw < α +2π for some (fixed) α ∈R. Show that for z = r eiθ ,
when the branch of logarithm

logz = lnr+ iθ , with r > 0,α < θ < α +2π

is used, we always have log(ew) = w.

Let’s write w = x+ iy, where x ∈ R and α < y < α +2π. Then ew = ex+iy = exeiy, and

`og(ew) = { ln(ex)+(y+2πn)i} , n ∈ Z ,

where `og represents the multivalued logarithm and (as usual) ln represents the logarithm
from R+ to R. But the branch of the logarithm taken in this problem corresponds to n = 0
(since α < y < α +2π), and we have

log(ew) = ln(ex)+ iy = x+ iy = w .

(b) Give an branch of the logarithm that ensures that for β = 1+ i we have

log(β 8) = 8log(β ).

Observe that β = 1+ i =
√

2eiπ/4 and β 8 = (
√

2eiπ/4)8 = 16. Consequently, if the branch
of the logarithm chosen has logβ = ln2

2 + iπ

4 , we also need logβ 8 = log(16) = 4ln2+2π i.
This means we need to take a branch cut of argument α where 0 < α < π/4. For example,
we may choose α = π/8. Then

log(1+ i)8 = log(16) = 4ln2+2π i = 8( ln2
2 + π

4 i) = 8log(1+ i) ,

where log is the branch of the logarithm with log(z) = ln |z|+ iargz, π/8< argz< 17π/8.

(c) For the same β as in the previous part, give a branch of the logarithm for which

log(β 8) 6= 8log(β ).

Again, assuming we take a branch so that Imlogβ = π/4, any branch cut of argument α

where α ≥ π/4 or α ≤ 0 will do. For example, for the principal branch of the logarithm
(that is, with α =−π), we have

Logβ
8 = Log16 = ln16 = 4ln2 6= 8Log(1+ i) = 8( ln2

2 + π

4 i) = 4ln2+2π i .

4. Calculate each of the following. Keep in mind that these expressions can be multivalued.

(a) (−1+ i
√

3)3/2 =
(

2e2π i/3
)3/2

=
(
8e2π i)1/2

= (8)1/2 = {2
√

2,−2
√

2} .

Note that this is the same result that you would get by writing

exp(3
2 log(−1+

√
3i)) = exp

(
ln(23/2)+ 3

2(2π/3+2nπ)i
)
=
√

8e(π+3nπ)i for n ∈ Z

since for n even, e(3n+1)π i =−1 and for n odd, e(3n+1)π i = 1.
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(b) iπ = eπ log i = exp
(
π(iπ/2+2nπ i)

)
= exp

(
i(π2/2+2nπ

2)
)
= cos

(4n+1
2 π

2)+isin
(4n+1

2 π
2)

for n ∈ Z .

(c) π i = ei logπ = ei(lnπ+2nπ i) == ei lnπ−2nπ) = e2nπ(cos(ln(π))+ isin(ln(π))) for n ∈ Z .

(d) i−2i i−2i = exp(−2i log i) = exp(−2i(i
π

2
+2nπ i) = e(4n+1)π for n ∈ Z .

Observe that the answer to (a) has two values, as you should expect from a square root. By
contrast, (b) has infinitely many values distributed densely around the unit circle, the answer
to (c) is an infinite set of values along a ray of argument lnπ ≈ 1.1447 and part (d) has infinitely
many values, but they are all real.

5. Find all roots of the equation sinz = cosh4 by equating the real parts of both sides, then equating
the imaginary parts.

Recall that sin(z) = 1
2i(e

iz− e−iz), and writing z = x+ iy gives the equation

eix−y− e−ix+y = 2i cosh(4)

which we can rewrite as

e−y(cosx+ isinx)− ey(cos(−x)+ isin(−x)
)
= 2i cosh(4) .

Note that cos(−x) = cos(x) and sin(−x) = −sin(x). Then equating real parts of both sides,
and then imaginary parts yields the two equations

cosx(e−y− ey) = 0 sinx(e−y + ey) = 2cosh(4) .

The equation on the left tells us that either y = 0 or x = π

2 + 2nπ for some n ∈ Z. But

from the right-hand equation, we cannot have y = 0 (since cosh(4) = 1
2(e

4 + e−4) 6= 0). Hence
sinx = 1.

Using this, we can rewrite the right-hand equation as e−y + ey = e4 + e−4. Consequently,
y =±4. There can be no other solutions, since e−y + ey is monotonically decreasing for y < 0
and increasing for y > 0.

Hence, any solution to the equation is of the form

z = π

2 +2nπ ± 4i, for n ∈ Z
(and every such number is a solution).

6. Show that sinhz = 0 if and only if z = inπ with n ∈ Z. You may use facts we already established
about ez, sinz and cosz without reproving them explicitly.

Recall that sinhz =−isin(iz). We already know that all the zeros of sinz are real numbers of
the form nπ with n ∈ Z, and hence the zeros of sinhz are exactly the points on the imaginary
axis of the form nπ i for n ∈ Z.

7. Evaluate the integrals below.

(a)
∫ 1

0
(1+ it)2 dt =

∫ 1

0
1− t2 dt + i

∫ 1

0
2t dt = t− t3/3

∣∣∣1
0
+ i t2

∣∣∣1
0
= 2

3 + i .

(b)
∫

π/2

0
e2ti dt =

∫
π/2

0
cos(2t)dt + i

∫
π/2

0
sin(2t)dt = 1

2 sin(2t)
∣∣∣π/2

0
− i

2 cos(2t)
∣∣∣π/2

0
=−i .


