MAT342 Homework 4

Due Wednesday, February 27

1. Section 2.24 of the text discusses the Cauchy-Riemann equations when z is interpreted in polar form. That is, writing $z=r e^{i \theta}$ with $r>0$, if $f(z)=u(r, \theta)+i v(r, \theta)$ is defined in a neighborhood \mathcal{U} of z_{0} and the partials of u and v with respect to r and θ are defined for $z \in \mathcal{U}$ and are continuous at z_{0}, then $f^{\prime}\left(z_{0}\right)$ exists whenever

$$
r u_{r}=v_{\theta} \quad \text { and } \quad u_{\theta}=-r v_{r} .
$$

Show that for $z \in \mathcal{U}$, we have $f^{\prime}(z)=e^{-i \theta}\left(u_{r}+i v_{r}\right)$ when it exists.
2. (a) Show that if $f=u+i v$ is analytic in a domain \mathcal{D}, then $(\nabla u) \cdot(\nabla v)=0$, where ∇ is the gradient operator from multivariable calculus.
(b) Consider the level curves given by $u(x, y)=a$ and $v(x, y)=b$. What does the previous part tell you about how these curves intersect at a point $f\left(z_{0}\right)=a+i b$?
3. (a) Show that the function $h(x, y)=x^{3}-3 x y^{2}+2 x$ is harmonic.
(b) Find an analytic function $f(z)=f(x+i y)$ so that $f(z)=h(x, y)=\operatorname{Re}(f(z))$. That is, find $v(x, y)$ so that $x^{3}-3 x y^{2}+2 x+i v(x, y)$ is analytic. The function $v(x, y)$ is called the harmonic conjugate of h.
(Hint: Since $f(x, y)=h(x, y)+i v(x, y)$ is analytic, you can determine what v_{x} and v_{y} must be. Then integrating with v_{y} with respect to y then gives you an expression that differs from $v(x, y)$ by a function depending on x alone. Similarly, you can integrate v_{x} with respect to x to get $v(x, y)+k(y)$; equating the two gives you $v(x, y)$.) Or maybe you can just guess the answer, and check that it works.)
4. Write $z=r e^{i \theta}$ and consider the function $f_{1}(z)=\sqrt{r} e^{i \theta / 2}$ for $r>0$ and $0<\theta<\pi$, which is analytic on the upper half-plane.
(a) Now let $f_{2}(z)=\sqrt{r} e^{i \theta / 2}$ with $r>0$ and $-3 \pi / 4<\theta<\pi / 4$. Discuss why f_{2} is an analytic continuation of f_{1}.
(b) Similarly, let $f_{3}(z)=\sqrt{r} e^{i \theta / 2}$ with $r>0$ and $3 \pi / 4<\theta<7 \pi / 4$. Is f_{3} an analytic continuation of f_{1} ?
(c) Compute $f_{2}(-i)$ and $f_{3}(-i)$. Do these functions agree? If not, explain.
5. (a) Find all values of $z \in \mathbb{C}$ such that $e^{4 z}=1$.
(b) Find all values of $z \in \mathbb{C}$ such that $e^{i z}=3$.
6. Recall that Log denotes the principal branch of the logarithm.
(a) Show that $\log (1+i)^{2}=2 \log (1+i)$.
(b) Show that $\log (-1+i)^{2} \neq 2 \log (-1+i)$.

