MAT342 Homework 4

Due Wednesday, February 27

Section 2.24 of the text discusses the Cauchy-Riemann equations when z is interpreted in polar form. That is, writing z = re^{iθ} with r > 0, if f(z) = u(r, θ) + iv(r, θ) is defined in a neighborhood U of z₀ and the partials of u and v with respect to r and θ are defined for z ∈ U and are continuous at z₀, then f'(z₀) exists whenever

 $ru_r = v_{\theta}$ and $u_{\theta} = -rv_r$.

Show that for $z \in U$, we have $f'(z) = e^{-i\theta}(u_r + iv_r)$ when it exists.

- 2. (a) Show that if f = u + iv is analytic in a domain \mathcal{D} , then $(\nabla u) \cdot (\nabla v) = 0$, where ∇ is the gradient operator from multivariable calculus.
 - (b) Consider the level curves given by u(x,y) = a and v(x,y) = b. What does the previous part tell you about how these curves intersect at a point $f(z_0) = a + ib$?
- 3. (a) Show that the function $h(x,y) = x^3 3xy^2 + 2x$ is harmonic.
 - (b) Find an analytic function f(z) = f(x + iy) so that f(z) = h(x,y) = Re(f(z)). That is, find v(x,y) so that $x^3 3xy^2 + 2x + iv(x,y)$ is analytic. The function v(x,y) is called the **harmonic conjugate** of *h*.

(Hint: Since f(x,y) = h(x,y) + iv(x,y) is analytic, you can determine what v_x and v_y must be. Then integrating with v_y with respect to y then gives you an expression that differs from v(x,y) by a function depending on x alone. Similarly, you can integrate v_x with respect to x to get v(x,y) + k(y); equating the two gives you v(x,y).) Or maybe you can just guess the answer, and check that it works.)

- **4**. Write $z = re^{i\theta}$ and consider the function $f_1(z) = \sqrt{r}e^{i\theta/2}$ for r > 0 and $0 < \theta < \pi$, which is analytic on the upper half-plane.
 - (a) Now let $f_2(z) = \sqrt{r}e^{i\theta/2}$ with r > 0 and $-3\pi/4 < \theta < \pi/4$. Discuss why f_2 is an analytic continuation of f_1 .
 - (b) Similarly, let $f_3(z) = \sqrt{r}e^{i\theta/2}$ with r > 0 and $3\pi/4 < \theta < 7\pi/4$. Is f_3 an analytic continuation of f_1 ?
 - (c) Compute $f_2(-i)$ and $f_3(-i)$. Do these functions agree? If not, explain.
- **5**. (a) Find all values of $z \in \mathbb{C}$ such that $e^{4z} = 1$.
 - (b) Find all values of $z \in \mathbb{C}$ such that $e^{iz} = 3$.
- **6**. Recall that Log denotes the principal branch of the logarithm.
 - (a) Show that $Log(1+i)^2 = 2Log(1+i)$.
 - (b) Show that $Log(-1+i)^2 \neq 2Log(-1+i)$.