MAT342 Homework 3

Due Wednesday, February 20

1. For fixed complex numbers a, b, c, and d, let $T(z)=\frac{a z+b}{c z+d}$ with $a d-b c \neq 0$. The map T is called a Möbius Transformation or a linear fractional transformation; these mappings play an important role in many areas of mathematics, especially in complex analysis and non-Euclidean geometry, and are closely connected with Einstein's Theory of Relativity.
(a) If $c=0$, compute $\lim _{z \rightarrow \infty} T(z)$.
(c) Again assuming $c \neq 0$, compute $\lim _{z \rightarrow-d / c} T(z)$.
(b) Assuming $c \neq 0$, compute $\lim _{z \rightarrow \infty} T(z)$.

$$
\lim _{z \rightarrow-d / c} T(z)
$$

2. Recall the usual stereographic projection of \mathbb{C} to the Riemann sphere $\overline{\mathbb{C}}$, where a point z in the plane corresponds to a point Z on the sphere when the line (in \mathbb{R}^{3}) joining the north pole N to z intersects the sphere at Z. Now consider the (inverse) stereographic projection taking a point Z on the sphere back to some w in the plane by reversing the process, but instead using the line
 joining Z with the south pole (labeled O in the figure), giving w as the intersection of this line with the plane. The composition of these two gives rise to a map $f: z \mapsto w$ of the plane \mathbb{C} to itself. What is this mapping? Give a formula for w in terms of z and familiar functions.
3. Prove that the function $f(z)=z \cdot \operatorname{Im}(z)$ is differentiable only at $z=0$ and is not differentiable at any nonzero $z \in \mathbb{C}$. What is $f^{\prime}(0)$?
4. Let $z=x+i y$. Show that the function

$$
f(z)=e^{x^{2}-y^{2}}(\cos (2 x y)+i \sin (2 x y))
$$

is entire, and find $f^{\prime}(z)$ for $z \in \mathbb{C}$.
5. For each of the functions listed below, determine at what points $z \in \mathbb{C}$ is not differentiable (and where it is). When the function is differentiable at z, calculate its derivative. Justify your answers fully.
(a) $f(x+i y)=e^{-x} e^{i y}$
(c) $h(z)=z-\bar{z}$
(b) $g(x+i y)=e^{-x} e^{-i y}$
(d) $k(z)=1 / z^{2}$
6. Let $f(z)=(\bar{z})^{2}-1$. Show that $f(z)$ is not analytic on any domain in \mathbb{C}, but the function $g(z)=f(f(z))$ is entire.

