MAT342 Homework 2

Due Wednesday, February 13

1. Derive the trigonometric identities

$$
\cos (3 \theta)=\cos ^{3} \theta-3 \cos \theta \sin ^{2} \theta \quad \text { and } \quad \sin (3 \theta)=3 \cos ^{2} \theta \sin \theta-\sin ^{3} \theta
$$

Hint: use de Moivre's formula.
2. Consider the product $(2+i)(3+i)$, and use this to show that

$$
\arctan (1 / 2)+\arctan (1 / 3)=\frac{\pi}{4}
$$

3. (a) Show that if a and b are fixed complex numbers with $a \neq b$, then the set

$$
\{z \in \mathbb{C}:|z-a|=|z-b|\}
$$

describes a line.
(Hint: first think about what kind of set $|z-a|=r$ describes for various values of $r>0$.)
(b) Show that all nine solutions z_{k} of the equation $(z-1)^{10}=z^{10}$ must have $\operatorname{Re}\left(z_{k}\right)=\frac{1}{2}$.
4. For each of the sets of complex numbers z below, make a rough sketch of it; then determine whether the set is open, closed, or neither. Also indicate which are domains, and which are bounded.
(a) $\operatorname{Re}(z)>2$
(d) $0 \leq \arg (z) \leq \frac{\pi}{4},(z \neq 0)$
(b) $|2 z+5| \leq 1$
(e) $2<|z-1|<3$
(c) $|z-4|=6$
(f) $\arg (z)=1$ or $z=0$.
5. Determine all the accumulation points of the set

$$
\mathcal{W}=\left\{z \in \mathbb{C} \left\lvert\, 0 \leq \arg (z) \leq \frac{\pi}{4}\right. \text { and } z \neq 0\right\}
$$

6. Let ω be any $n^{\text {th }}$ root of unity with $\omega \neq 1$. Show that

$$
1+\omega+\omega^{2}+\omega^{3}+\ldots+\omega^{n-1}=0
$$

7. Consider the sector

$$
\mathcal{V}=\left\{z \in \mathbb{C} \left\lvert\, 0 \leq \arg (z) \leq \frac{\pi}{4}\right. \text { and }|z| \leq 1\right\} \cup\{0\}
$$

Sketch the image of \mathcal{V} under the mappings $s(z)=z^{2}, c(z)=z^{3}$, and $q(z)=z^{4}$.
8. For $z \neq 0$, write $z=r e^{i \theta}$ with $|z|=r$ and $\operatorname{Arg}(z)=\theta$ (so that $-\pi<\theta \leq \pi$ and $r>0$).

Define $S(z)=\sqrt{r} e^{i \theta / 2}$ for all $z \neq 0$. Show each of the following:
(a) $\lim _{z \rightarrow i} S(z)=\frac{1+i}{\sqrt{2}}$
(b) $\lim _{z \rightarrow 0} S(z)=0$
(c) $\lim _{z \rightarrow-1} S(z)$ does not exist.

