MAT342 Homework 1

Due Wednesday, February 6

1. Simplify each of the following to the form $x+i y$ with $x, y \in \mathbb{R}$.
(a) $\frac{1+2 i}{3-4 i}+\frac{1}{5 i}$
(b) $(1+i)^{4}$
(c) $\frac{\overline{1+i}}{|1+i|}$
2. Show that for any complex number $z, \sqrt{2}|z| \geq|\operatorname{Re} z|+|\operatorname{Im} z|$.
3. Verify by direct calculation that $z=2+i$ is a root of the polynomial $f(z)=z^{3}-5 z^{2}+9 z-5$; that is, confirm that $f(2+i)=0$.
4. Use Cardano's method to find a solution to the equation

$$
z^{3}+3 z^{2}-3 z-11=0
$$

(a) First, rewrite the equation in the form ${ }^{\dagger}$

$$
x^{3}=p x+q
$$

by making the substitution $z=x-1$ so that the resulting cubic has its inflection point at $x=0$ instead of $z=1$.
(b) Next, set $x=u+v$ so that the left-hand side can be written in the form

$$
(u+v)^{3}=u^{3}+3 u v(u+v)+v^{3}=(3 u v) x+\left(u^{3}+v^{3}\right)
$$

By equating coefficients of x, observe that the two sides will be equal when

$$
3 u v=p \quad \text { and } \quad u^{3}+v^{3}=q .
$$

Solving this for v gives $u^{3}+(p / 3 u)^{3}=q$, which can be rewritten as a quadratic equation in u^{3} by clearing the denominator. Use the quadratic formula (or just factor it) to solve the resulting equation for u^{3} (you will, of course, get two solutions).
(c) By symmetry, we obtain the same values for v^{3}, so one of the solutions in the previous part is u^{3}, the other is v^{3}. Thus, a solution to the equation in part (a) will be $x=u+v$, that is, the sum of the cube roots of the two solutions in part (b).
(d) Finally, the solution to the original equation can be found as $z=x-1$.
(You should get $z=2^{2 / 3}+2^{1 / 3}-1$ as your answer.)

[^0]
[^0]: ${ }^{\dagger}$ In class, I wrote this as $x^{3}=3 p x+2 q$ to simplify the resulting formula.

