22. (expires 3/29) In this problem will study the Lotke-Volterra predator-prey equations. In a very simple ecosystem there are two populations, whose numbers at a time t (with $t \mathrm{in}$, say, years) are given by $f(t)$ (foxes) and $r(t)$ (rabbits). The evolution of these quantities obeys the system

$$
\left\{\begin{array}{l}
\dot{f}(t)=G_{f} f(t)+E f(t) r(t), \\
\dot{r}(t)=G_{r} r(t)-E f(t) r(t)
\end{array}\right.
$$

where G_{f} and G_{r} are the growth rates for the foxes and the rabbits, respectively, in the absence of each other. E is the probability of a fatal encounter between a fox and a rabbit (normalized per number of foxes and rabbits).
First, write some words to explain why these equations make sense. Then, fix $G_{f}=0.4, G_{r}=2.4$ (it's notorius that rabbits have the tendency to reproduce quickly) and $E=0.01$. For a few initial conditions of your choice, plot the trajectories in the (f, r)-plane (say, with $0 \leq f \leq 1000$ and $0 \leq r \leq 1000$). For the same initial conditions, plot the actual solutions too (i.e, $f(t)$ against t, and $r(t)$ against t). Write some comments interpreting how the behavior of the solutions relates to what happens to the two species. (Here, to plot $f(t)$ against t, you can use the scene argument to DEplot, or you can use dsolve and maybe plots[odeplot].)
Finally, repeat the same procedure with $G_{f}=-1.1$. Things change substantially. As above, explain how the solution behavior relates to the populations of foxes and rabbits. What does having $G_{f}=-1.1$ mean in the context of rabbit and fox populations?
23. (expires 3/29) In class on March 7, we discussed various numerical methods for solving differential equations: For a given stepsize h, a numerical method takes a (possibly approximate) solution at time t and samples the derivatives at some number of values between t and $t+h$ to get an approximate solution at time $t+h$. If the error in the approximation is ϵ, the order of the method is k if $\epsilon=O\left(h^{k}\right)$, that is, ϵ shrinks faster than $c h^{k}$ some constant c as $h \rightarrow 0$.
The system $\left\{x^{\prime}=2 y, y^{\prime}=-x^{3}\right\}$ can be solved exactly using elliptic integrals. The initial condition $\{x(0)=0, y(0)=1\}$ gives a solution of period approximately $T_{p} \approx 3.708149354602744$. Using the numeric option to dsolve, demonstrate that Euler's method (method=classical[foreuler]) is of order 1, the Heun formula (method=classical [heunform]) is of order 2, and 4th-order RunkeKutta (method=classical[rk4]) is of order 4 by comparing the approximate solution $x\left(T_{p}\right)$ to the exact one $\left(x\left(T_{p}\right)=0\right)$ for various values of h with $0.001 \leq$ $h \leq 0.2$ for each of these methods. Use at least 10 values of h (more is better). A graph of error vs h would be nice, but not required if you explain well. Leave out values of h yielding an error greater than 0.1 - this is huge in this context.

24. (expires 3/29) Consider the vector field $\quad \mathbf{F}(x, y)=\left\langle-x\left(x^{4}+y^{4}\right)-y, x-y\left(x^{4}+y^{4}\right)\right\rangle$. Use Maple to draw the either the direction field or the vector field, together with some well-chosen solution curves. (I would use DEplot here, but you can use a combination of fieldplot, dsolve (with the numeric option), plots[odeplot], and plots[display] if you prefer.)

Then prove that the origin is a global attractor in the future, i.e., for every solution $\mathbf{z}(t)=(x(t), y(t))$, we have $\lim _{t \rightarrow+\infty} \mathbf{z}(t)=\mathbf{0}$.

Note: The proof is not long, but requires a mathematical argument, not a maple calculation. The proof may depend on something you calculated in maple, but more will be needed. Polar coordinates can be your friend.

