Feb 29, 2024

Starting to talk about a model of glider flight.

Background about the Phugoid

[

The Phugoid model is a system of two nonlinear differential equations in a frame of reference relative to the plane. Let $v(t)$ be the speed the plane is moving forward at time t, and $\theta(t)$ be the angle the nose makes with the horizontal. As is common, we will suppress the functional notation and just write v when we mean $v(t)$, but it is important to remember that v and θ are functions of time.

If we apply Newton's second law of motion (force $=$ mass \times acceleration) and examine the major forces acting on the plane, we see easily the force acting in the forward direction of the plane is
$\frac{m d v}{d t}=-m g \sin \theta-d r a g$

This matches with our intuition: When θ is negative, the nose is pointing down and the plane will accelerate due to gravity. When $\theta>0$, the plane must fight against gravity.

In the normal direction, we have centripetal force, which is often expressed as $\frac{m v^{2}}{r}$, where r is the instantaneous radius of curvature. After noticing that that $\frac{d \theta}{d t}=\frac{v}{r}$, this can be expressed as $\frac{v d \theta}{d t}$, giving
$m v \frac{d \theta}{d t}=-m g \cos \theta+l i f t$
Experiments show that both drag and lift are proportional to v^{2} and we can choose our units to absorb most of the constants. Thus, the equations simplify to the system
$\left\{\frac{d v}{d t}=-R v^{2}-\sin \theta, \frac{d \theta}{d t}=\frac{-\cos \theta+v^{2}}{v}\right\}$
which is what we will use henceforth. Note that we must always have $v>0$.
[Stuff about solving differential equations now.
$\boldsymbol{>} \operatorname{int}\left(x^{\wedge} 3, x\right)$

$$
\begin{equation*}
\frac{x^{4}}{4} \tag{1}
\end{equation*}
$$

Can think of this as finding $f(x)$ so that $\frac{d f}{d x}=x^{3}$
$\left[>\operatorname{dsolve}\left(f^{\prime}(x)=x^{3}\right)\right.$

$$
\begin{equation*}
f(x)=\frac{x^{4}}{4}+c_{1} \tag{2}
\end{equation*}
$$

> dsolve(\{diff(f(x), $\left.\left.x)=x^{\wedge} 3, f(1)=7\right\}\right)$

$$
\begin{equation*}
f(x)=\frac{x^{4}}{4}+\frac{27}{4} \tag{3}
\end{equation*}
$$

$\left[>\operatorname{int}\left(\frac{\sin (x)}{x}, x\right)\right.$

$$
\begin{equation*}
\operatorname{Si}(x) \tag{4}
\end{equation*}
$$

$[\mathrm{Si}(\mathrm{x})$ is just the integral of $\sin (\mathrm{x}) / \mathrm{x} \ldots$. duh.
[> plot([Si(x), diff(Si(x), x)], x=-2*Pi..4*Pi);

$\overline{=}>$ MySol $:=$ dsolve $\left(\left\{x^{\prime}(t)+y(t)=t \cdot x(t), y^{\prime}(t)+y(t)=t, x(0)=0, y(0)=-2\right\}\right)$;
$M y S o l:=\left\{x(t)=\frac{\operatorname{erf}\left(\frac{\sqrt{2} t}{2}+\frac{\sqrt{2}}{2}\right) \sqrt{2} \sqrt{\pi} \mathrm{e}^{\frac{1}{2}+\frac{t^{2}}{2}}}{2}+\frac{\operatorname{erf}\left(\frac{\sqrt{2} t}{2}\right) \sqrt{2} \sqrt{\pi} \mathrm{e}^{\frac{t^{2}}{2}}}{2}+1+\right.$

$$
\begin{equation*}
\left.\left.-\frac{\sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2}}{2}\right) \mathrm{e}^{\frac{1}{2}} \sqrt{\pi}}{2}-1\right) \mathrm{e}^{\frac{t^{2}}{2}}, y(t)=t-1-\mathrm{e}^{-t}\right\} \tag{5}
\end{equation*}
$$

[plot([MySol[1], MySol[2]], t=-2..2)
Error. (in plot) incorrect first argument $\left[x(t)=1 / 2^{*} \operatorname{erf}\left(1 / 2^{*} 2^{\wedge}(1 / 2)\right.\right.$
$\frac{\left.{ }^{*} t+1 / 2^{*} 2^{\wedge}(1 / 2)\right)^{*} 2^{\wedge}(1 / 2)^{*} P^{\wedge}(1 / 2)^{*} \exp \left(1 / 2+1 / 2^{*} t^{\wedge} 2\right)+1 / 2^{*} \operatorname{erf}\left(1 / 2^{*} 2^{\wedge}(1 / 2)\right.}{\left.{ }^{*} t\right)^{*} 2^{\wedge}(1 / 2)^{*} P^{\wedge}(1 / 2)^{*} \exp \left(1 / 2^{*} t^{\wedge} 2\right)+1+\left(-1 / 2^{*} 2^{\wedge}(1 / 2)^{*} \operatorname{erf}\left(1 / 2^{*} 2^{\wedge}(1 / 2)\right)^{*}\right.}$
$\frac{\left.\left.\exp (1 / 2)^{*} P^{\wedge}(1 / 2)-1\right)^{*} \exp \left(1 / 2^{*} t^{\wedge} 2\right), y(t)=t-1-\exp (-t)\right]}{}$
\lfloor Why didn't this work?
[> MySol[1]

$$
\left[\begin{array}{rl}
x(t) & =\frac{\operatorname{erf}\left(\frac{\sqrt{2} t}{2}+\frac{\sqrt{2}}{2}\right) \sqrt{2} \sqrt{\pi} \mathrm{e}^{\frac{1}{2}+\frac{t^{2}}{2}}}{2}+\frac{\operatorname{erf}\left(\frac{\sqrt{2} t}{2}\right) \sqrt{2} \sqrt{\pi} \mathrm{e}^{\frac{t^{2}}{2}}}{2}+1+ \\
\left.-\frac{\sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2}}{2}\right) \mathrm{e}^{\frac{1}{2}} \sqrt{\pi}}{2}-1\right) \mathrm{e}^{\frac{t^{2}}{2}}
\end{array}\right.
$$

because MySol is a pair of equations, not functions. We can pick off the functions in either of the two following ways.
[> rhs(MySol[1])

$$
\begin{aligned}
& \frac{\operatorname{erf}\left(\frac{\sqrt{2} t}{2}+\frac{\sqrt{2}}{2}\right) \sqrt{2} \sqrt{\pi} \mathrm{e}^{\frac{1}{2}+\frac{t^{2}}{2}}}{2}+\frac{\operatorname{erf}\left(\frac{\sqrt{2} t}{2}\right) \sqrt{2} \sqrt{\pi} \mathrm{e}^{\frac{t^{2}}{2}}}{2}+1+ \\
& \left.\quad-\frac{\sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2}}{2}\right) \mathrm{e}^{\frac{1}{2}} \sqrt{\pi}}{2}-1\right) \mathrm{e}^{\frac{t^{2}}{2}}
\end{aligned}
$$

[> subs(MySol,[x(t),y(t)])

$$
\begin{align*}
& {\left[\frac{\operatorname{erf}\left(\frac{\sqrt{2} t}{2}+\frac{\sqrt{2}}{2}\right) \sqrt{2} \sqrt{\pi} \mathrm{e}^{\frac{1}{2}+\frac{t^{2}}{2}}}{2}+\frac{\operatorname{erf}\left(\frac{\sqrt{2} t}{2}\right) \sqrt{2} \sqrt{\pi} \mathrm{e}^{\frac{t^{2}}{2}}}{2}+1+(\right.} \tag{8}\\
& \left.\left.-\frac{\sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2}}{2}\right) \mathrm{e}^{\frac{1}{2}} \sqrt{\pi}}{2}-1\right) \mathrm{e}^{\frac{t^{2}}{2}}, t-1-\mathrm{e}^{-t}\right]
\end{align*}
$$

$>$ plot(subs(MySol,[x(t),y(t)]), $t=-2 . .2$, size=[.5,.5], legend $=[x(t), y$
(t)]);

$[$ Now back to thinking about gliders.
$\left[>\right.$ phug $:=\left[\operatorname{diff}(v(t), t)=-\sin (\operatorname{theta}(t))-R \cdot v(t)^{2}, \operatorname{diff}(\operatorname{theta}(t), t)\right.$

$$
\begin{align*}
& \left.=\frac{\left((v(t))^{2}-\cos (\operatorname{theta}(t))\right)}{v(t)}\right] \\
& \quad \text { phug }:=\left[\frac{\mathrm{d}}{\mathrm{~d} t} v(t)=-\sin (\theta(t))-R v(t)^{2}, \frac{\mathrm{~d}}{\mathrm{~d} t} \theta(t)=\frac{v(t)^{2}-\cos (\theta(t))}{v(t)}\right] \tag{9}
\end{align*}
$$

[The solution, when you can find it, is horrible and uninformative. Let's make a vector field instead [> with(plots):
> fieldplot([v-cos(theta)/v, -sin(theta)], theta=-Pi..Pi, v=0..3, arrows=slim, tickmarks=[piticks,default], size=[.8, .4]);

[I'd rather have a direction field -- ie, all vectors have the same length.
[> with(DEtools):
$>$ R:=0; \# let's ignore friction for now

$$
\begin{equation*}
R:=0 \tag{10}
\end{equation*}
$$

> phug;

$$
\begin{equation*}
\left[\frac{\mathrm{d}}{\mathrm{~d} t} v(t)=-\sin (\theta(t)), \frac{\mathrm{d}}{\mathrm{~d} t} \theta(t)=\frac{v(t)^{2}-\cos (\theta(t))}{v(t)}\right] \tag{11}
\end{equation*}
$$

$>$ DEplot(phug, [theta(t), v(t)], t=0..10, theta=-Pi/2..Pi/2, v=0..3, tickmarks=[piticks,default])

$\overline{=}$ DEplot(phug, [theta(t), v(t)], t=0..10,
$[[t h e t a(0)=0, v(0)=1.5], \quad[\operatorname{theta}(0)=0, v(0)=2]]$,
theta =-Pi/2..Pi/2,
$v=0 . .3$, tickmarks=[piticks,default])

/> DEplot(phug, [theta(t), v(t)], t=0..10,
$[[\operatorname{theta}(0)=0, v(0)=1.5]$, $[\operatorname{theta}(0)=0, v(0)=2]$,
[theta $(0)=0, \mathrm{v}(0)=1.05]$],
theta=-Pi/2..3*Pi,
v=0..3, tickmarks=[piticks,default])

\rightarrow DEplot(phug, $\left[\right.$ theta(t), v(t)], t=0..10 0^{θ},
[seq([theta(0)=0, v(0)=.2*i],i=1..20)],
theta $=-\mathrm{Pi} / 2.3^{*} \mathrm{Pi}$,
v=0..3, tickmarks=[piticks,default], size=[.8,.6], stepsize=. 05)

「> DEplot(phug, [theta(t), v(t)], t=0..10,
[seq([theta(0)=0, $\left.\left.\left.v(0)=.2^{*} i\right], i=1 . .20\right)\right]$,
theta=-Pi/2..3*Pi,
v=0..3, tickmarks=[piticks,default],size=[.8,.6],stepsize=.05)

R:=.1;
DEplot(phug, [theta(t), v(t)], t=0..20,
[seq([theta(0)=0, v(0)=.2*i],i=1..20)],
theta=-Pi/2..3*Pi,
v=0..3, tickmarks=[piticks,default],size=[.8,.6],stepsize=.05) $R:=0.1$

Near $\theta=\frac{\pi}{2}, v=0$, the system becomes undefined. The plane is nearly vertical and stalls. We can see this below -- a tiny change in velocity has a dramatic change in behaviour.
$>$ R:=.1; \#
DEplot(phug, [theta(t), v(t)], t=-20..20,
[[theta $(0)=P i / 2-.001, v(0)=.01],[\operatorname{theta}(0)=P i / 2+.001, v(0)=.01]]$, theta $=-\mathrm{Pi} / 2.3^{*} \mathrm{Pi}$, v=0..3, tickmarks=[piticks,default],size=[.8,.6],stepsize=.05)

$>$ phug

$$
\begin{equation*}
\left[\frac{\mathrm{d}}{\mathrm{~d} t} v(t)=-\sin (\theta(t))-0.1 v(t)^{2}, \frac{\mathrm{~d}}{\mathrm{~d} t} \theta(t)=\frac{v(t)^{2}-\cos (\theta(t))}{v(t)}\right] \tag{12}
\end{equation*}
$$

