
(5)(5)

> >

> >

> >

(6)(6)

(4)(4)

(3)(3)

> >

> >

> >

> >

(1)(1)

(2)(2)

> >

Feb 27, 2024.

A bit more on least squares and friends.

Proc to grab data from web
Let's pick up where we left off (ish).
ExecuteFromWeb("https://www.math.stonybrook.edu/~scott/mat331.
spr24/daily/extras/bad_line.txt")

loaded 40 points into lpts.

with(CurveFitting):
badfit:=LeastSquares(lpts,x);

badfit 8.47217789980814 0.930101594702111 x

plot([lpts,badfit], x=-10..10, style=[point,line],symbolsize=20,
size=[.8,.5]);

x
10 5 5 1020

20
40
60
80

100
120
140
160

Let's do this by hand.
Assume m, b are unknowns.

sqErr:= (pt,m,b) -> (pt[2] - (m*pt[1] + b))^2
sqErr pt, m, b ↦ pt2 m pt1 b 2

sqErr(lpts[2],m,b);
6.522580699 3.748081610 m b 2

lsqDist:= (m,b,data) -> local i; add(sqErr(data[i],m,b),i=1..nops
(data))/nops(data)

lsqDist m, b, data ↦
add sqErr datai, m, b , i = 1 ..nops data

nops data

lsqDist(-0.93,-8.4,lpts);
952.5861378

lsqDist(-0.95,-8.4,lpts);

(6)(6)

> >

> >

952.6008630

plot(lsqDist(m,-8.4,lpts),m=-1.2..-0.5, title="fix intercept");

m
1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5

953

954

955

956

957

958

959

fix intercept

plot(lsqDist(-0.95,b,lpts),b=-10..-7, title="fix slope");

> >

(6)(6)

b
10 9 8 7

953

953.5

954

954.5

fix slope

plot3d(lsqDist(m,b,lpts),m=-1.2..-0.5, b=-12..-5,title="minimize
square", style=surfacecontour);

> >

(7)(7)

(8)(8)
> >

(6)(6)

> >

(9)(9)

> >

minimize square

We can clearly see the minimum of this function. Since Ldist is differentiable in the slope and intercept
variables, we can solve for the critical point.

Ldist:=lsqDist(m,b,lpts):
diff(Ldist,m);
diff(Ldist,b);

0.6625104446 b 79.21770381 m 79.29341901
2 b 0.6625104446 m 17.56055782

solve({diff(Ldist,m)=0,diff(Ldist,b)=0}, {m,b})
b = 8.472177899, m = 0.9301015950

Note that we could try to minimize the absolute value of the distance...
absErr:= (pt,m,b) -> abs(pt[2] - (m*pt[1] + b));
absDist:= (m,b,data) -> local i; add(absErr(data[i],m,b),i=1..nops
(data))/nops(data)

absErr pt, m, b ↦ pt2 m pt1 b

absDist m, b, data ↦
add absErr datai, m, b , i = 1 ..nops data

nops data

plot3d(absDist(m,b,lpts),m=-5..-0.5, b=-20..0,title="minimize abs",
style=surfacecontour);

(6)(6)

(10)(10)

> >

> >
(11)(11)

> >

minimize abs

But we can't take deriv of absolute value.

Let's look for a function that is quadratic near 0, but grows slowly for distances far from zero.
series(ln(1+x),x)

x
1
2

 x2 1
3

 x3 1
4

 x4 1
5

 x5 O x6

series(ln(1+x^2),x)
x2 1

2
 x4 O x6

plot(ln(1+x^2),x=-10..10,scaling=constrained);

(6)(6)

> >

(12)(12)

> >

x
10 5 0 5 10

1

2

3

4

This seems a good candidate to weight the far-away points in a way that they don't screw things up,
without ignoring them completly.
logErr:= (pt,m,b) ->ln(1+(pt[2] - (m*pt[1] + b))^2);
logDist:= (m,b,data) -> local i; add(logErr(data[i],m,b),i=1..nops
(data))/nops(data)

logErr pt, m, b ↦ ln 1 pt2 m pt1 b 2

logDist m, b, data ↦
add logErr datai, m, b , i = 1 ..nops data

nops data

plot3d(logDist(m,b,lpts),m=-3..1, b=-20..0,title="minimize log",
style=surfacecontour);

minimize log

> >
(14)(14)

> >

(13)(13)

(6)(6)

> >

> >

Sorry, I had some trouble solving for the derivatives equal to 0. I dunno, it usually works. But today is
not my day.

So, instead, let's just use Maple's Minimize function, which is way faster anyway.
Maple has a built-in facility to search for minima of functions of one or more variables.
Minimizing such functions without using calculus has made siginificant progress in the last 20 years or
so, and Maple has a pretty good procedure built it.

While you can use this in your project, note that it will miss the non-minimum critical point in part 3 (cuz
it isn't a minimum), so you still need to do the calculus or the thinking to figure out what it means.

Mini:=Optimization[Minimize](logDist(m,b,lpts), b=-20..0, m=-3..0)
Mini 1.06636069982635995, b = 13.0995320795104, m = 1.82808928324032

MyLine:=subs(Mini[2],m*x+b)
MyLine 1.82808928324032 x 13.0995320795104

plot([lpts,badfit,MyLine], x=-10..10, style=[point,line$2],
symbolsize=20,size=[.8,.5], legend=[data,"least squares", "least
log-squares"]);

data least squares least log-squares

x
10 5 5 1020

20

60

100

160

plot([lpts,badfit,MyLine], x=-10..10,y=-35..15, style=[point,
line$2],symbolsize=20,size=[.8,.5], legend=[data,"least squares",
"least log-squares"]);

(6)(6)

> >

(15)(15)
> >

> >

data least squares least log-squares

x
10 5 0 5 10

y

30

20

10

10

Let't do another example, quickly, with even more bad points.

ExecuteFromWeb("https://www.math.stonybrook.edu/~scott/mat331.
spr24/daily/extras/worse_line.txt")

loaded 54 points into bdata.

OK, we have 54 data points; let'ts fit them with least squares and see how it looks.

bline := CurveFitting[LeastSquares](bdata, x)
bline 24.9502982841362 1.72140920411782 x

This is pretty terrible:
plots[display](<
 plot([bdata,bline], x=-10..10, style=[point,line], symbolsize=
20) |
 plot([bdata,bline], x=-10..10,-10..10, style=[point,line],
symbolsize=20, view=[-10..10,10..30],title="zoomed") >);

> >

> >

(16)(16)

> >

(6)(6)

(17)(17)

x
10 5 0 5 10

100

100

200

x
10 5 0 5 10

15

20

25

30
zoomed

So now let's try to improve this using the least log-squares method. Clearly the line we are looking for
has an intercept around 20, and a slope less than 0.

TheMin:=Optimization[Minimize](logDist(m,b,bdata), b=-15..25, m=-5.
.0)
TheMin 1.56085987773085733, b = 19.2306735590914, m = 0.409601481190954

GoodLine:=subs(TheMin[2],m*x+b)
GoodLine 0.409601481190954 x 19.2306735590914

plots[display](
 <plot([bdata, bline, GoodLine], x = -11 .. 10, style = [point,

> >

(6)(6)

line $ 2], symbolsize = 19,
 title = "All data", legend = [data, "least squares",
"least log-squares"]) |
 plot([bdata, bline, GoodLine], x = -11 .. 10, style = [point,
line $ 2], symbolsize = 19, scaling=constrained,
 view = [-11 .. 10, 5 .. 35], axes = boxed, title = "zoomed
in")>);

data least squares
least log-squares

x
10 5 0 5 10

100

100

200

All data

x
10 5 0 5 10

5

10

15

20

25

30

35

zoomed in

The least-log-squares method is a "robust" fitting method, in that it is much less sensitive to data with

(19)(19)

(18)(18)

> >

> >

(6)(6)

> >

> >

some outliers (or big noise) thrown in than regular least squares, but acts like least squares for small
variations.

There are other, more recent, methods that are also robust. In particular, the Least Trimmed Squares
method (introduced in the 1980s, but significantly studied only in the last 20 years) examines all subsets
throwing out k points, and picks the "best" line from among those subsets. This is a lot more
computation that regular least squares, but still tractable now that computers are reasonably fast.

trimline := subs(x[1] = x, Statistics[LeastTrimmedSquares](bdata,
x))

trimline 0.401442654921944 x 19.1216440573069

(I don't know why maple insists on calling the variable x1 instead of x, so I swapped it out.)

Another robust method is the Repeated Median Estimator (also introduced in the 1980s, but becoming
popular recently now that some significant theoretical developments have drastically reduced the
computation cost). This looks at the median of the medians of slopes and intercepts over a bunch of pairs
of points. I discussed this a little in class, but too much to write here.

rmline := Statistics[RepeatedMedianEstimator](bdata, x)
rmline 19.2125102680044 0.427092381602868 x

Now let's look at all ov these various versions, and notice that the robust ones are all close, and regular
least squares gets strongly influenced by the outliers.
plots[display](<
 plot([bdata, bline, GoodLine, trimline, rmline],
 x = -11 .. 10, style = [point, line $ 4], symbolsize = 19,
title = "All data",
 legend = [data, "least squares", "least log-squares",
"trimmed squares", "repeated median"]) |
 plot([bdata, bline, GoodLine, trimline, rmline],
 x = -11 .. 10, style = [point, line $ 4], symbolsize = 19,
view = [-11 .. 10, 5 .. 35],
 scaling=constrained, axes = boxed, title = "zoomed in")>)

> >

(6)(6)

data least squares
least log-squares trimmed squares
repeated median

x
10 5 0 5 10

100

100

200

All data

x
10 5 0 5 10

5

10

15

20

25

30

35

zoomed in

As you can see, the robust fits are all quite close (although they differ a little), but the regular least squares
is vastly different.

We could discuss measures of how good these are, etc. But really, that should be an AMS class, and I'm
tired of least squares. I suspect you are, too.

