8 Feb 2024

More about splines.

Y Image of a spline used in technical drawing

By SRS i .l\

gp_lines of degree d through n points (or "knots") have n(d + 1) conditions, that is, we have n
polynomials {Pys Py P, } passing through »+1 points (%5 %) with the following restrictions:

* The polynomials must be continuous at the 2n conditions given by the given points. That is
pl.(xl._l) =Yi_ps pi(xl.) =y, i=1,2,...n
« The derivatives up to (4 — 1)* order at each of the interior knots must agree, that is,

| W, . e’ \
e \\ - *' \“ \\l;
W A - .
. s s . i \ %
o , \v B , N

Y (x)=p (%) i=1L2,n=1 k=1,2,.,d—1

n(d+1)

n
{P1> Py P}
n
Xp Vi
pl.(xl._l) =y,_p.Jalse,2,..,n
(d—1)*%
false, 2,...,.n —k=1,2,..,d — 1 @

=Since n polynomials of degree d have n(d+1) coefficients and
n(d+1)—2n+(n—1)(d=1))=d—1
« this leaves d-1 conditions to determine.

These are "end conditions”, ie, specified by the derivatives at the two endpoints. There are several
variations, two most common are
+ A natural spline, which sets the the highest order derivatives to 0 (half of them can be specified)
[this is the default]
« A periodic spline, forcing the derivatives at the first knot to agree with the derivatives at the final
one.
n(d+1)=2n—(n—1) (d—1)=d—1 2

I caneitherusewith(CurveFitting) toload all the commands in the CurveFitting package, or
refer to its "full name" usingCurveFitting:-Spline orlcanuse with(CurveFitting,
Spline) tojust get that one.
| For variety, let's just load the two we care about here.
[> with(CurveFitting,Spline);
with(CurveFitting,Polynomiallnterpolation);
[Spline]
[Polynomiallnterpolation | 3)

:Let's define some data, and play with it.

> knots:=[[0,1], [1,2], [2,0], [3,1], [4.,0], [5,1]];

knots == [[0,1],[1,2],[2,0], [3,1],[4,0], [5, 1]] 4
[> polly:=Polynomiallnterpolation(knots,x);

s 17 4 115 53 143 45

=1 s_ 17 _ 2. B
polly-—6x 2 x + T 3 X+ 2 x+1 (5)

> sp2:=Spline(knots,x,degree=2)

2716 x° +1 L

1189 S

3392 , 6108 338 .3
1189 © T 1189 ¥ T 1189 YS9
3368 , 14172 14872 .5
1189 7 1189 YT 1189 YS9

sp2 = (6)

2548 , 15408 22103 27
1189 7 1189 YT 1189 YS9
2408 , 19284 38608 9
1189 7 1189 YT 1189 YS9
2388 , 23880 58511 eri
1189 © T 1189 Y7 1189 cmemwise

> plot([knots,polly,sp2], x=-1..6,y=-2..5,
style=[point,line,line],symbolsize=20,symbol=solidbox, size=[.8,

41);

5-

| > sp3:=Spline(knots,x,degree=3):
> plot([knots,polly,sp2,sp3], x=-1..6,y=-2..5,
style=[point,line,line,line],symbolsize=20,
symbol=solidbox, size=[.8,.4]);

2_
[> dsp3:=diff(sp3,x)

> ddsp3:=diff(%,x)

dsp3 =

ddsp3 =

669 x° 432
— +

209 209

1464 , 4266 135
200 © 7 200 YT 11

75 5, 7290 8991

X —

TN 209 209
1101 , 414 13743

200 © 7 11 YT 209

471 , 4710 11409

X —

~200 F T 209 209

_ 1338x
209

2928 x 4266

209 209

_ 150x n 7290
11 209

2202 x 414

209 11

_ 942x n 4710
209 209

> dddsp3:=diff(ddsp3,x)

4 <x

4 <x

@)

(®)

B plot([knots,sp3,dsp3,ddsp3,dddsp3],
style=[point,line$4],symbolsize=20)

\%

\%

10-

dddsp3 =

1338

209
undefined
2928

209
undefined

150
11

undefined
2202

209
undefined

942
209

?spline

4 <x

=-1..6,

moreknots:=[[-1/4,1],0p(knots)];

moreknots =

|

nsp3:=Spline(moreknots,x,degree=3,endpoints=natural):
psp3:=Spline(moreknots,x,degree=3,endpoints=periodic):

1
——,1

4

plot([moreknots, nsp3, psp3],

x=-0.75..5.5,style=[point,line$3])

}, [0,1],[1,2],[2,0],[3,1],[4,0], [5,1]

©)

(10)

1.5

01 ' 1
] x
—0.51
> plot([knots,polly,sp2,sp3], x=-1..6,y=-2..5,

style=[point,line,line,line],symbolsize=20,
symbol=solidbox, size=[.8,.4],
color=["DarkRed","DarkGreen" ,blue,orange],

legend=["data","polynomial”,"deg 2 spline","deg 3 spline"]);
5

| B data polynomial deg 2 spline deg 3 spling
Let's now do this for splines of all possible degrees, and add a legend. But typing them all is tedious,
| S0 let's "compute” the text of the legend.
> plot([polly,seq(Spline(knots,x,degree=k),k=1..6)], x=-1..6,y=-2.
5

style=line,symbolsize=20,

symbol=solidbox, size=[.8,.4],

legend=["polynomial",

seq(sprintf("degree %d spline",k),k=1..6)],legendstyle=
[location=right]);

polynomial

degree 1 spling|
degree 2 spling
degree 3 spling|
degree 4 spline
degree 5 spling|
degree 6 spling

| in the command)
> sayhi:=sprintf("hello %d",54)
sayhi := "hello 54"

| string that | can use, instead of going to the standard output.
> printf("hello %d",54)

| hello 54

[> sayhi[2]

lle

| | can automate this into a command, which takes in my data, and gives out the relevant plot

> makepic:=data->plot([Polynomiallnterpolation(data,x),seq(Spline
(knots,x,degree=k),k=1..6)], x=-1..6,y=-2..5,
style=line,symbolsize=20,
symbol=solidbox, size=[.8,.4],
legend=["polynomial",
seq(sprintf("degree %d spline",k),k=1..6)],legendstyle=
[location=right]);

Warning, (in makepic) k™ is implicitly declared local

makepic := data v plot([CurveFitting.L Polynomiallnterpolation(data, x), seq(CurveFitting.L

Spline(knots, x, degree=k), k=1..6)],x=—1.6,y=—2.5, style=line, symbolsize =20,
symbol = solidbox, size = [0.8, 0.4], legend = ["polynomial", seq(sprintf ("degree %d spline",
k),k=1..6)], legendstyle= [location = right])

B makepic(knots)

polynomial

degree 1 spling|
degree 2 spling
degree 3 spling|
degree 4 spling
degree 5 spling|
degree 6 spling

[The s printf command lets me "print" a value into a string, providing some formatting (that's the f

(11)

[This is similar to p rintf, which let's me print out a formatted string, but fors p rin tf, the resultis a

12)

13)

Finally, let's discuss something about Bézier curves, which are related but different. These show up in
a lot of computer graphics. See, for example, the Wikipedia page or any number of other references.
We won't be using these, but | would be remiss if | didn't mention them.

[> ?Task,BezierCurves

VY Generate Bézier Curves

Description

A Bézier curve is a polynomial determined by a set of points in such a way that it interpolates the
first and last points, but has its shape determined by the remaining points. This task allows you to
interactively define the points and view the curve.

Bézier Curves

« Use the slider to select », the degree of the

Bézier curve.
1
| 1§ J 1
n= | I I I
2 3 4 5
« Press Initialize to initialize/clear

the plot window.

» Click on the plot area and select the Click
and Drag Manipulator (Dye) from the Plot

menu or plotting toolbar.

» Click to insert n + 1 control points
P,k=0,...,n

« Drag control points to modify the Bézier
curve.

 Below, find the Bézier curve

R=§;)(Z)(l —u)" "M P,

1.090343 — 2.023484 1> + 4.879494 1> + 4.443258 u
2.180685 + 18.41744 1> — 24.78334 1> + 12.31509 u

