
(1)(1)

8 Feb 2024

More about splines.

Image of a spline used in technical drawing

Splines of degree d through n points (or "knots") have conditions, that is, we have
polynomials passing through +1 points with the following restrictions:

The polynomials must be continuous at the 2n conditions given by the given points. That is

The derivatives up to order at each of the interior knots must agree, that is,

> >

> >
(4)(4)

> >

> >

(6)(6)

(1)(1)

(3)(3)

(5)(5)

(2)(2)

n

n

st

Since n polynomials of degree d have n(d+1) coefficients and

this leaves d-1 conditions to determine.

These are "end conditions", ie, specified by the derivatives at the two endpoints. There are several
variations, two most common are
 A natural spline, which sets the the highest order derivatives to 0 (half of them can be specified)
[this is the default]
 A periodic spline, forcing the derivatives at the first knot to agree with the derivatives at the final
one.

I can either use wi th (CurveF i t t ing) to load all the commands in the CurveFitting package, or
refer to its "full name" using CurveFi t t ing: -Sp l ine or I can use w i th (CurveF i t t ing ,
Spl ine) to just get that one.
For variety, let's just load the two we care about here.

wi th (CurveF i t t ing ,Sp l ine) ;
wi th (CurveFi t t ing ,Polynomia l In terpola t ion) ;

Let's define some data, and play with it.
k n o t s : = [[0 , 1] , [1 , 2] , [2 , 0] , [3 , 1] , [4 , 0] , [5 , 1]] ;

po l ly :=Polynomia l In terpola t ion(knots ,x) ;

sp2:=Spline(knots,x,degree=2)

(6)(6)

(1)(1)

> >

> >
> >

p l o t ([k n o t s , p o l l y , s p 2] , x = - 1 . . 6 , y = - 2 . . 5 ,
s ty le= [po in t , l ine , l ine] ,symbols ize=20 ,symbol=so l idbox , s ize=[.8 ,
. 4]) ;

sp3:=Spl ine(knots,x,degree=3):
p l o t ([k n o t s , p o l l y , s p 2 , s p 3] , x = - 1 . . 6 , y = - 2 . . 5 ,
s t y l e = [p o i n t , l i n e , l i n e , l i n e] , s y m b o l s i z e = 2 0 ,
symbol=so l idbox , s i ze= [.8 , . 4]) ;

(6)(6)

(1)(1)

> >

> >

> >

(7)(7)

(9)(9)

(8)(8)

dsp3 :=d i f f (sp3 ,x)

ddsp3:=di f f (%,x)

dddsp3:=dif f (ddsp3,x)

(6)(6)

(1)(1)

> >

> >

> >

(10)(10)

> >

> >

(9)(9)

p lot ([knots ,sp3,dsp3,ddsp3,dddsp3] , x=-1 . .6 ,
 s ty le= [po in t , l ine$4] ,symbols i ze=20)

?spl ine
moreknots := [[-1 /4 ,1] ,op (knots)] ;

nsp3:=Spline(moreknots,x,degree=3,endpoints=natural):
psp3:=Spline(moreknots,x,degree=3,endpoints=periodic):
p lo t ([moreknots , nsp3 , psp3] ,
 x = - 0 . 7 5 . . 5 . 5 , s t y l e = [p o i n t , l i n e $ 3])

(6)(6)

(1)(1)

> >

> >

(9)(9)

p l o t ([k n o t s , p o l l y , s p 2 , s p 3] , x = - 1 . . 6 , y = - 2 . . 5 ,
s t y l e = [p o i n t , l i n e , l i n e , l i n e] , s y m b o l s i z e = 2 0 ,
symbol=so l idbox , s i ze= [.8 , . 4] ,
color=["DarkRed","DarkGreen",blue,orange],
legend=["data" ,"polynomia l" ,"deg 2 sp l ine" ,"deg 3 sp l ine"]) ;

Let's now do this for splines of all possible degrees, and add a legend. But typing them all is tedious,
so let's "compute" the text of the legend.

p l o t ([p o l l y , s e q (S p l i n e (k n o t s , x , d e g r e e = k) , k = 1 . . 6)] , x = - 1 . . 6 , y = - 2 .
. 5 ,
sty le=l ine,symbolsize=20,
symbol=so l idbox , s i ze= [.8 , . 4] ,
legend=["polynomial",
 seq (spr in t f ("degree %d sp l ine" ,k) ,k=1 . .6)] , l egendsty le=
[l o c a t i o n = r i g h t]) ;

(11)(11)

(13)(13)

> >

> >

> >

(12)(12)

(6)(6)

(1)(1)

> >

> >

(9)(9)

The s p r i n t f command lets me "print" a value into a string, providing some formatting (that's the f
in the command)

sayh i :=spr in t f ("he l lo %d" ,54)

This is similar to p r i n t f, which let's me print out a formatted string, but for s p r i n t f, the result is a
string that I can use, instead of going to the standard output.

p r i n t f (" h e l l o % d " , 5 4)
h e l l o 5 4

s a y h i [2]
"e"

I can automate this into a command, which takes in my data, and gives out the relevant plot
makepic:=data->plot ([Polynomial Interpolat ion(data,x) ,seq(Spl ine
(k n o t s , x , d e g r e e = k) , k = 1 . . 6)] , x = - 1 . . 6 , y = - 2 . . 5 ,
s ty le= l ine ,symbols ize=20 ,
symbol=so l idbox , s i ze= [.8 , . 4] ,
legend=["polynomial",
 seq (spr in t f ("degree %d sp l ine" ,k) ,k=1 . .6)] , l egendsty le=
[l o c a t i o n = r i g h t]) ;

W a r n i n g , (i n m a k e p i c) ` k ` i s i m p l i c i t l y d e c l a r e d l o c a l
:L :L

makepic(knots)

(6)(6)

(1)(1)

> >

(9)(9)

Finally, let's discuss something about Bézier curves, which are related but different. These show up in
a lot of computer graphics. See, for example, the Wikipedia page or any number of other references.
We won't be using these, but I would be remiss if I didn't mention them.

?Task,BezierCurves

Generate Bézier Curves

Description
A Bézier curve is a polynomial determined by a set of points in such a way that it interpolates the
first and last points, but has its shape determined by the remaining points. This task allows you to
interactively define the points and view the curve.

Bézier Curves

Use the slider to select , the degree of the
Bézier curve.

n =
5432

Press Init ial ize to initialize/clear

the plot window.

Click on the plot area and select the Click

and Drag Manipulator () from the Plot

menu or plotting toolbar.

Click to insert control points

Drag control points to modify the Bézier
curve.

Below, find the Bézier curve

R

(6)(6)

(1)(1)

(9)(9)

R

