34. (expires 4/24) Find a formula for all the solutions to the differential equation

$$
\frac{d x}{d t}(t)=-2 x(t), \quad t \in \mathbb{R}
$$

Among them, single out the one for which $x(0)=3$. [Hint: read the help page for dsolve, or just do it in your head. It is that easy.]
35. (expires 4/24) Have Maple find analytic solutions to the following system of differential equations,

$$
\left\{\begin{aligned}
y^{\prime \prime}(t)-z(t) & =e^{t} \\
z^{\prime}(t)-y(t) & =0
\end{aligned}\right.
$$

with initial conditions: $y(0)=1, y^{\prime}(0)=0, z(0)=k$. Let us denote the solutions by $y_{k}(t), z_{k}(t)$ (since they depend on the parameter $k$ ).
For $k$ taking all integer values from -10 to 10 , and $t \in[-4,2]$, plot the functions $y_{k}$ in blue, and the functions $z_{k}$ in red, all on the same graph. (Yes, you will then have 42 functions plotted on the same graph.) [This is certainly a case when you don't want to retype the functions that Maple finds. You will almost certainly need to read the help page for dsolve. I also found subs, unapply, and seq useful.]
36. (expires 4/24) For the functions $y_{k}(t)$ and $z_{k}(t)$ found in the previous problem, plot the parametric curves $\varphi_{k}(t)=\left[y_{k}(t), z_{k}(t)\right]$ for integer values of $k$ between -5 and 5 and $-6<$ $t<4$ on the same graph. Use the view option of plot to only show what lies in the region $-10<y<10,-10<z<10$, and use a sequence of colors so that each solution is a different color. [ HINT: you might find something like seq(COLOR (HUE, i/11), i=0..10) useful for the latter.]

NOTE: The fact that there are various notations for differential equations is purely intentional.

