Last time, saw that classification of a linear system like

$$\rightarrow \langle D(x), D(y) \rangle = A.\langle x, y \rangle$$

$$\begin{bmatrix} D(x) \\ D(y) \end{bmatrix} = A. \begin{bmatrix} x \\ y \end{bmatrix}$$
 (1)

is determined by eigenvalues (and eigenvectors) of A: λ_1, λ_2

 $\lambda_1, \lambda_2 > 0$, source

 $\lambda_1, \lambda_2 < 0$, sink

 $\lambda_1 > 0, \ \lambda_2 < 0 \ saddle$

 $\lambda_1 = \lambda_2$ degenerate, \cdots higher order terms can **break** it.

 λ_1, λ_2 complex $\lambda_1 = a + bi, \lambda_2 = a - bi$

a > 0, spiral source

a < 0 spiral sink

(elliptic) ***** if linear. Higher order terms can break this.

Trace = sum of diagonal elements = $\lambda_1 + \lambda_2$

Determinant = $\lambda_1 \cdot \lambda_2$

Eigenvalues of A = $\frac{trace \pm \sqrt{(trace)^2 - 4 det}}{2}$

-- What is below has a problem, and is here for historical reasons

I'll put it in gray and a smaller font so you can see where the wrong stuff ends easily.

> phug:=(theta,v)->[(v^2-cos(theta))/v, -sin(theta)-R*v^2];

$$phug := (\theta, v) \rightarrow \left[\frac{v^2 - \cos(\theta)}{v}, -\sin(\theta) - Rv^2\right]$$
(2)

> Jack:=VectorCalculus[Jacobian](phug(theta,v), [theta,v]);

$$Jack := \begin{vmatrix} \frac{\sin(\theta)}{v} & 2 - \frac{v^2 - \cos(\theta)}{v^2} \\ -\cos(\theta) & -2Rv \end{vmatrix}$$
 (3)

> convert(solve({phug(theta,v)[1]=0, phug(theta,v)[2]=0}, [theta,v]), radical);

$$\left[\left[\theta = \arctan\left(-\sqrt{\frac{1}{R^2 + 1}} R, \sqrt{\frac{1}{R^2 + 1}} \right), v = \left(\frac{1}{R^2 + 1} \right)^{1/4} \right] \right]$$
 (4)

Fix:=R->[arctan(-R*sqrt(1/(R^2+1))),(1/(R^2+1))^(1/4)];

$$Fix := R \to \left[\arctan\left(-\sqrt{\frac{1}{R^2 + 1}} R\right), \left(\frac{1}{R^2 + 1}\right)^{1/4}\right]$$
 (5)

> FixMat:=unapply(eval(Jack, {theta=Fix(R)[1], v=Fix(R)[2]}),R):

> with(LinearAlgebra):

> Trace(Jack);

$$\frac{\sin(\theta)}{v} - 2Rv \tag{6}$$

> subs({theta=Fix(R)[1], v=Fix(R)[2]},%);

$$\frac{\sin\left(-\arctan\left(\sqrt{\frac{1}{R^2+1}}R\right)\right)}{\left(\frac{1}{R^2+1}\right)^{1/4}} - 2R\left(\frac{1}{R^2+1}\right)^{1/4}$$
 (7)

> simplify(%,trig);

$$-\frac{\left(\frac{1}{R^2+1}\right)^{1/4}R}{\sqrt{1+\frac{R^2}{R^2+1}}} - 2R\left(\frac{1}{R^2+1}\right)^{1/4}$$
(8)

Somethings wrong. I'll fi8x this later. life sucks.

----- let's try this again (added on April 16)

What I want to do is determine how the type of fixed point varies with the parameter R.

First, we enter our system, and solve for the v and theta which correspond to the fixed point, as a function of R. This was done correctly above, but I'll redo it here for continuity.

> phug:=(theta,v)->[v-cos(theta)/v, -sin(theta)-R*v^2];
Jack:=VectorCalculus[Jacobian](phug(theta,v),[theta,v]);

$$phug := (\theta, v) \rightarrow \left[v - \frac{\cos(\theta)}{v}, -\sin(\theta) - R v^2 \right]$$

$$Jack := \begin{bmatrix} \frac{\sin(\theta)}{v} & 1 + \frac{\cos(\theta)}{v^2} \\ -\cos(\theta) & -2 R v \end{bmatrix}$$
(9)

What I did wrong above (which was stupid) was to rewrite the solution in terms of a version of arctan which ignored the second argument (which identifies the branch). This means that maple is unable to simplify the expression cleanly. So let's try it in a somewhat different way:

> with(LinearAlgebra):

> FixSols:= convert(solve(phug(theta,v),{theta,v}), radical);

FixSols :=
$$\left\{ v = \left(\frac{1}{R^2 + 1} \right)^{1/4}, \theta = \arctan \left(-\sqrt{\frac{1}{R^2 + 1}} R, \sqrt{\frac{1}{R^2 + 1}} \right) \right\}$$
 (10)

> simplify(subs(FixSols,Jack))
JacFix:=unapply(%,R):

. . . .

$$\begin{bmatrix}
-R\left(\frac{1}{R^2+1}\right)^{1/4} & 2 \\
-\sqrt{\frac{1}{R^2+1}} & -2R\left(\frac{1}{R^2+1}\right)^{1/4}
\end{bmatrix}$$
(11)

> JacFix(0); Eigenvalues(%);

$$\begin{bmatrix} 0 & 2 \\ -1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} I\sqrt{2} \\ -I\sqrt{2} \end{bmatrix}$$
(12)

> JacFix(3.0); Eigenvalues(JacFix(3.0));

$$\begin{bmatrix}
-1.687023976 & 2 \\
-0.3162277660 & -3.374047952
\end{bmatrix}$$

$$\begin{bmatrix}
-2.24936530070151 + 0. I \\
-2.81170662729849 + 0. I
\end{bmatrix}$$
(13)

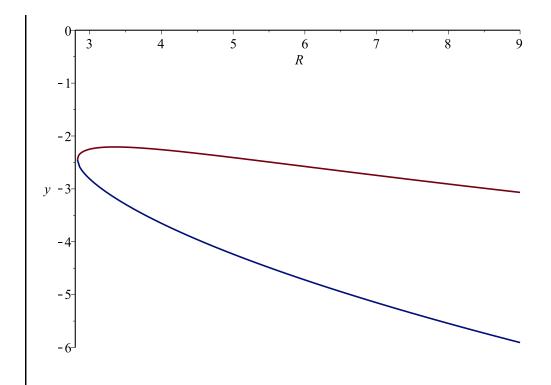
That's more like it!

> EV:=simplify(Eigenvalues(JacFix(R)));

$$EV := \begin{bmatrix} -\frac{3}{2} R \left(\frac{1}{R^2 + 1}\right)^{1/4} + \frac{1}{2} \sqrt{\sqrt{\frac{1}{R^2 + 1}}} \left(-8 + R^2\right) \\ -\frac{3}{2} R \left(\frac{1}{R^2 + 1}\right)^{1/4} - \frac{1}{2} \sqrt{\sqrt{\frac{1}{R^2 + 1}}} \left(-8 + R^2\right) \end{bmatrix}$$
 (14)

Here we can see that we will have complex eigenvalues whenever $R^2 < 8$, that is, for $|R| < 2\sqrt{2}$. In addition, for $0 < R < 2\sqrt{2}$, the eigenvalues will have a negative real part, which means we have a spiral sink (solutions spiral in to the fixed point). For $R > 2\sqrt{2}$, both eigenvalues are real. While it is obvious that the second eigenvalue is always negative, it isn't completely obvious that the first is. We can get a clue by making a plot:

> plot(EV,R=2*sqrt(2)..9, y=-6..0);



Now let's think a little to confirm our suspicions. Note that the factor $\frac{1}{2} \left(\frac{1}{R^2 + 1} \right)^{1/4}$ can be pulled out of both terms of EV[1] (even though maple is reluctant to do so), which means that the eigenvalues are

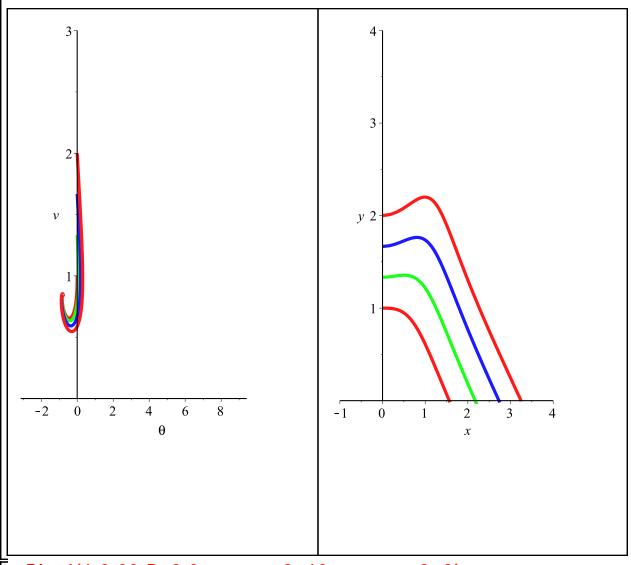
$$\frac{1}{2} \left(\frac{1}{R^2 + 1} \right)^{1/4} \left(-3 R \pm \sqrt{R^2 - 8} \right)$$

Since $3 R > \sqrt{R^2 - 8}$ for all values of $R > 2\sqrt{2}$, we know both eigenvalues are always negative.

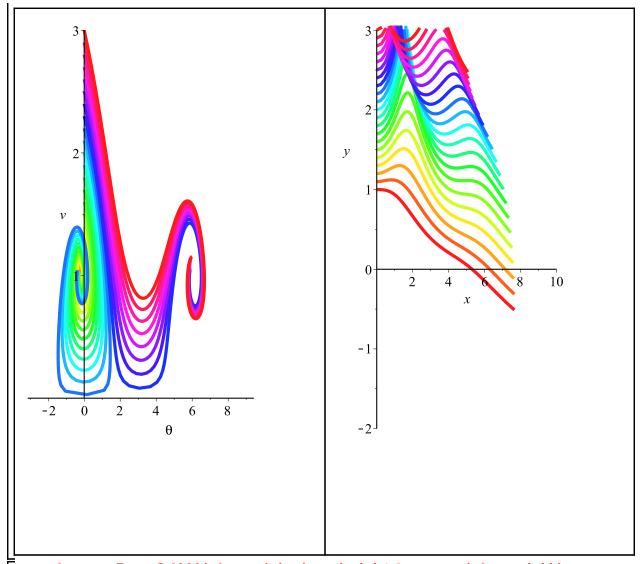
This means for R>0, the fixed point is always a sink (which is spiral for $0< R< 2\sqrt{2}$)

_------ now back to what we did in class. ------ now back to what we did in class.

```
> Plot4 := proc(vmin, vmax, numv, {yrange:=0..4, R:=0, xrange:=-1.
  . 4 })
  local inits, vi, i, cols;
  inits:= [seq([theta(0)=0, v(0)=vi, x(0)=0, y(0)=vi],
    vi=vmin..vmax, (vmax-vmin)/numv )];
  cols:= [seq(COLOR(HUE,i),i=0..1,1/numv)];
   display(
  Array([DEplot(xphug(R), [theta,v,x,y], t=0..8,
       inits,
       theta=-Pi..3*Pi, v=0..3, x=xrange, y=yrange,
      linecolor=cols, numpoints=150, obsrange=false,
      scene=[theta,v]),
   DEplot(xphug(R), [theta,v,x,y], t=0..8,
       inits,
      theta=-Pi..3*Pi, v=0..3, x=xrange, y=yrange,
      linecolor=cols, stepsize=0.1, obsrange=false,
       scene=[x,y])))
  end:
> Plot4(1,2,3,R=1);
      3.
                                      4
```



> Plot4(1,3,20,R=0.2,xrange=0..10,yrange=-2..3);



> Plot4(1,3,20,R=0.2,xrange=0..10,yrange=-2..3);

