| 2019-11-07 New topic: Cryptography.

| Given some message like

> message := "This is a secret. Don't tell."

i message = "This is a secret. Don't tell." @
| Want to hide the meaning, but in a way it can be read later.

> Alphabet := "abcdefghijklmnopqrstuvwxyz ."; # note i forgot a few: T and D.

i Alphabet := "abcdefghijklmnopgrstuvwxyz ." 2
> length(Alphabet);
i 28 3)
> Cryptabet = "ZYXWVUTSRQ .PONMLKJIHGFEDCBA",
i Cryptabet :== "ZYXWVUTSRQ .PONMLKJIHGFEDCBA" 4
> [ength(Cryptabet)
28 (5)

;> with(StringTools) : # this loads a bunch of things related to manipulating strings

We can translate all the characters in Alphabet into those in Cryptabet. The ones not occuring in
| Alphabet will be left alone.

> secret := CharacterMap(Alphabet, Cryptabet, message);

i secret == "TSRIBRJIBZBJVXKVIABBDNO'IBIV..A" (6)
> CharacterMap (Cryptabet, Alphabet, secret);
"ghis is a secret. yon't tell.")

[Trouble is | had some extra letters in my message that encrypted to other stuff. This is why the T and D
wound up weird.
| We can fix this by dealing with the T and D.

> Alphabet := "abcdefghijklmnopqrstuvwxyz . TD";
Cryptabet :== "ZYXWVUTSRQ .PONMLKIJIHGFEDCBA!)";
Alphabet := "abcdefghijklmnopqrstuvwxyz .TD"

i Cryptabet == "ZYXWVUTSRQ .PONMLKJIHGFEDCBA!)" (8)
> nusecret := CharacterMap (Alphabet, Cryptabet, message); secret,
nusecret := "ISRIBRIBZBJVXKVIABB)NO'IBIV..A"
i "TSRIBRJBZBJVXKVIABBDNO'IBIV..A" 9)
Note that the encryption is the same, except the first character changed from T to !, and the D after BB
| changed to a), because we added them into our character sets. Now it decodes OK:
> CharacterMap (Cryptabet, Alphabet, nusecret);
"This is a secret. Don' tell.” (10)

[There are lots of reasons why this is not the best thing to do. | talked about this at some length, but not
gonna type it here.

=Long talking about ASCII, Unicode, UTF-8, google is your friend if you don't know. Or watch this
youtube video.

| To convert a char to ascii number (in decimal, not hex)

> Ord("Z")
Q (11)

=> Oi"d(AL)

122 (12)

> Ord(" H)
i 3?2 (13)

> Char(115)

”S" (14)

| Rather than doing it one by one, we can ask maple to convert them to a list of ascii codes.

> stuff == convert("These ar some chars but I cant speel", bytes)
stuff == [84, 104, 101, 115, 101, 32,97, 114,32, 115, 111, 109, 101, 32, 99, 104, 97, 114, 115, (15)
| 32,98,117,116,32,73,32,99, 97,110, 116, 32, 115, 112, 101, 101, 108]

We can undo that with a similar command. In particular, convert(thing, bytes) will convert to a list of

numbers if thing is a string, and will convert to a string if thing is a list of decimal numbers between 0
| and 255 (where the decimal numbers are character codes).

> convert(stuff, bytes)

"These ar some chars but | cant speel (16)

| If we want to convert a string to a list of characters, we can use Explode:

> listochars == Explode("It is not a bomb")

i ZlStOC/’lClFS — [HIH’ "t", " H’ uin’ "S”, n H, HnH’ "0", "t", n H’ uan’ " H’ HbH, "O", Hmﬂ’ Hb"] (17)
| We can undo the exploded list with Implode.

> Implode(listochars)
"It is not a bomb" (18)

=> ImPZOde([Haﬂ’ Hbﬂ’ HCH])
"abc" (19)

[Note that we can also reference the individual characters one by one. Unlike in C or similar languages,
| the first character is 1, note 0.

> message := "This is a message"
message = "This is a message" (20)

=> message[7]
"s" (21)

[Note also that we can do this ourselves, using seq and so on. Just to show we can, here goes.
| A version of convert(message,bytes) is

> [seq(Ord(message[i]),i=1..length(message))]

i [84, 104, 105, 115, 32, 105, 115, 32,97, 32, 109, 101, 115, 115, 97, 103, 101] (22
> convert(message, bytes)
i [84, 104, 105, 115, 32,105, 115, 32,97, 32, 109, 101, 115, 115, 97, 103, 101] (23)
| Or Explode(message)
> kaboom = [seq(message[i], i=1 ..length(message))]
kaboom — [HTH, thl’ Hi"’ "S", n H, HiH, HSH’ n H’ Haﬂ, n H, Hmﬂ, He"’ "S", ”S", HaH, "gﬂ, HeH] (24)

;The cat comand glues strings (or characters, which are lenght one strings) together:

nn

> cat("xx","yy")

i "XXyy" (25)
> Cat("a", "b"’ "C”, "d")
i "abcd" (26)
| So the analog of Implode is
> cat(op(kaboom))
"This is a message” 27

:cat(this,that) can also be written using two vertical bars ||

> "first" || "Second"
"firstSecond" (28)

;It does slightly different things if the arguments are not all strings:
> cat(x,3,"c")

i x3c (29)
| Above is not a string, but a name. Can assign to a name, but not a string.
> "x3¢" = 7’ .
Error. illegal use of an object as a nhame
i x3¢! = 14!
> cat(x,3,"c") =17,
i x3c = (30)
> x3c
7 (32)

_StringTooIs has some things that check whether an argument is of a certain type. For example, ASCII
| characters have codes in the range 0..127

> IsASCII("a")

| true (32)
> Char(234)
_ - (33)
> IsASCII(Char(234))
false (34)

;Certain characters are "printable” (ie, correspond to regular characters, not control codes, etc.)
> [sPrintable("z")
true (35

=> IsPrintable(Char(17))
false (36)

[Here are all the ASCII characters. A couple are "newline", "return", "tab" and so on, which is why the
| weird breaks:

> allAscii := Implode([seq(Char(i),i=0..127)])
allAscii == "0 0000000 (37)

(1]

DUODO0D00DO0DOooOO ME#8%'O* +,-./0123456789: <=>?
i @ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]* “abcdefghijklmnopqrstuvwxyz{|}~1"
[There is a command "Select" (also it has a friend "Remove") which will select all characters for which
| atest returns true. For example, to get all the "printable” ascii characters:

> Printing := Select(IsPrintable, allAscii)

Printing := (38

"1"H$9%'()* +,-./0123456789: <=>2@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]

| 7_"abedefghijklmnopgrstuvwxyz{|}~"
;First printable char is a space. Then an exclamation !, then a double quote, then a hash #, etc.

> Printing[1], Printing[2), Printing[3], Printing[4]

e g (39)

[> length(Printing)
% (40)

| Other useful: lowercase, uppercase

> Select(IsLower, allAscii)
"abcdefghijkimnopgrstuvwxyz" (41

[> Select(IsUpper, allAscii)
"ABCDEFGHIJKLMNOPQRSTUVWXYZ" 42)

:Enough for now. Next time we'll do some more stuff.

