Solutions to Homework 5- MAT319

October 26, 2008

1 3.1
Exercise 1 (3).
This is just a straightforward calculation.
Exercise 2 (5).
(a). lim (#) =0

Notice that
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So if € > 0 is given, then choose N > 1/e. Then if n > N, then
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as desired.

(b). Tim (22) =2

Suppose € > 0 is given. We wish to choose N so that if n > N, then we have
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It is clear that this inequality holds if we choose N > 1/e.
().
If € > 0, we wish to find NV so that if n > N then
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It is clear that the above inequality holds if we choose N > 2%



(d).
If € > 0 is given, we wish to show that
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It is clear that the above inequality holds when we choose N > \/%

Exercise 3 (11).

If € > 0, then we wish to choose N so that if n > N then we have

n+1-—
= 1
‘ n(n+1) | < /n <e€
So choose N > 1/e.
Exercise 4 (16). lim% =0

First we prove the hint, that 2" /n! < 2(2/3)"~2 if n > 3. For the base case,
if n = 3 then we have 8/6 < 2(2/3). Suppose the result holds for n. Then
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Now the result follows from example 3.1.11b.

2 3.2

Exercise 5 (6).

For a, Notice that lim(2 + 1/n) = 2 +1lim(1/n) = 2, so that lim(2 +1/n)? =
lim(2 + 1/n)lim(2 4+ 1/n) = 4. For b, we go back to the definition (just like in
exercise 5 of the previous section) and choose N > 1/e. For ¢, rationalizing the
numerator we find that
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Now this last term is a quotient of two convergent sequences, the constant

sequence 1 and the sequence 1+ 2/y/n. Both of these sequences converge to 1,
so their quotient converges to 1. For d, we have
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Exercise 6 (9). y, and \/ny, converge, and find their limits.



‘We have
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Which converges to 0 by definition, with N chosen to be greater than 1/e2. On

the other hand
1
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We know that 1+ 1/n converges to 1. By theorem 3.2.10, 1/1 + 1/n converges

to 1. So a quick application of the limit laws tells us that \/ny, converges to
1/2.

Exercise 7 (13).

For a, we have
1<nt/"<n

so that

By 3.1.11d, n'/™ converges to 1, so by the squeeze theorem the limit in question
converges to 1. For b, notice that

1< (n|)1/n2 < (nn)l/n2 _ nl/n
So by the squeeze theorem, the limit is 1.
Exercise 8 (20).

The hypothesis just tells us that z,, and z,, — y,, are convergent sequences.
By the addition limit law, we see that =, — (x, — yn) = yn converges as well.



