MAT319, Fall 2007 Second Midterm

11/9/2007

Name:	ID:	

Question	Points	Score
1	25	
2	30	
3	30	
4	15	
Total:	100	

Name:	Id:

1. 25 points Is the infinite series $\sum_{n=1}^{\infty} \frac{1}{-1 + 2n\sqrt{n}}$ convergent? (If yes, you don't need to find the value).

Name:	Id:

2. 30 points What is
$$\lim_{x\to\infty} \frac{7x^2+1}{\sqrt{2x+5}}$$
?

Name:	Id:
- 19	

3. 30 points Use the definition of the limit (I mean use " ϵ, δ ") to prove that

$$\lim_{x \to 3} \frac{2x^2 + 4}{x - 1} = 11.$$

Name:	Id:

4. 15 points Let $f: \mathbb{R} \to \mathbb{R}$ be a function such that for any $x \in \mathbb{R}$, we have

$$|f(x) - f(1)| < 6\sqrt{|x - 1|}$$

Show that such a function f is continuous at x = 1. (You will get some partial credit if you recall the definition of continuit of a function at a point.)